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1. Introduction 

Over the years, the demand for maritime transportation has rapidly increased [1], [2]. This 

usually leads to an increasing in competition among different ports in providing efficient 

services. Port managers face significant challenges in efficiently utilizing the given resources 

to provide a cost-effective service [1]. Among many optimization and decision making 

problems in the port management system, the berth allocation problem (BAP) is considered as 

one of the most challenging and it has a critical role in the ports effectiveness and 

competitiveness. The BAP seeks an allocation for a given set of vessels berthing positions and 

berthing times. The main objective of the BAP is to minimize the total waiting time for all 

vessels in a port [2].  

 

BAP is known to be an NP-hard optimization problem [1], [2], [3]. Thus, due to the 

exponential growth of the computational time as instance increases, exact methods are usually 

only applicable for the small-sized instances; despite being able offer optimal solutions if 

given enough computational resource [3]. Consequently, meta-heuristic algorithms are widely 

adopted by the researchers to deal with BAP, as they can often return a good quality solution 

within a reasonable computational time. Examples of meta-heuristic algorithms are: tabu 

search [2], clustering search [4] and particle swarm optimization [5]. In this work, we propose 

an Exponential Monte-Carlo with Counter (EMCQ) local search algorithm for the BAP. 

EMCQ is a variant of simulated annealing, that accepts worse solutions in order to escape from 

local optima using a non-monotonic acceptance criterion [6], [7]. In addition, to enhance the 

effectiveness of the proposed EMCQ, we utilize multi-neighborhood operators to effectively 

explore the search space and also deal with different instance characteristics. The proposed 

algorithm has been tested on BAP benchmark instances that were used by other researchers 

and compared with the best known results in the scientific literature [2].  

2. Problem description  

The BAP has been categorized into two types, based on the berth type and the vessels arrival 

time [1]. The berth is called a discrete berth if the quay is divided into a set of sections (berths) 

and a continuous berth if the quay is not divided. The vessel’s arrival time is dynamic if the 

vessels can arrive at any time over the planning horizon, and static if all vessels have arrived at 

the port before the berth planning starts. In this work, we deal with the BAP that has discrete 

berths and dynamic arrival times [1]. Given a set of berths and a set of vessels, each vessel is 

associated with an arrival time, priority and a handling time. Some vessels can be assigned to 

any berths while other can only be assigned to a subset of berths. The handling time of a vessel 

is different from one berth to another.  

 

More formally, assign for each vessel a berth and a berthing time on the selected berth while 

ensuring that each vessel is assigned to exactly one berth and there is no more than one vessel 

assigned to the same berth at the same time. The overall goal (objective function) is to 

minimize the total waiting time of all vessels which is calculated as follows [2], [3], [4]: 
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where 

- n  :    number of vessels 

- m :    number of berths 

- vi :    the priority of vessel i 

- T
k
i :  the berting time of a vessel i at berth k. 

- ai :   the arrival time of vessel i. 

- ti
k 
:   the handling time of vessel i at berth k. 

- xij
k 
: descion variable,  xij

k 
=

 
1 if vessel j is serviced by berth k after the vessel i. 

 

3. The proposed algorithm 

We propose a local search algorithm for the BAP that follows the general framework of most 

local search algorithms. That is, generates an initial solution and try to improve it. In the 

following subsections, we describe the initial solution generation method and the proposed 

improvement algorithm.  

3.1 Initial solution generation method 

The initial solution is generated in a random manner. For each vessel, determine the number of 

the available and feasible berths. Next, randomly assign vessel to a berth from the determined 

set of berths. If the selected berth for the current vessel is empty, the berthing time of this 

vessel is the same as the vessel arrival time. If selected berth has some vessels, add the current 

vessel, sort the assigned vessels based on their arrival time and assign to each one a berthing 

time based on the current vessels order. This process is repeated until all vessels have been 

allocated. Calculate the quality (objective function) of the generated initial solution using 

Equation (1).  

3.2 The improvement algorithm 

In this work, we utilize the Exponential Monte-Carlo with counter (EMCQ) local search 

algorithm to further improves the generated initial solution [6], [8]. The EMCQ search strategy 

is similar to simulated annealing [6], which also accepts worse solutions in order to escape 

from a local optima but utilizes a different mechanism. EMCQ starts with an initial solution 

and iteratively modifies it, seeking for a better solution, for a certain number of iterations. The 

initial solution is modified to generate a neighborhood solution using a neighborhood operator. 

Then, the quality of the neighborhood solution is calculated using Equation (1) and compared 

with the initial one. If the quality of the neighborhood solution is better than the initial 

solution, it will replace the initial solution. Otherwise, the solution might be accepted based on 

EMCQ acceptance criterion. In EMCQ, the probability of accepting worse solution is 

calculated as follows: p= e
-Θ/λ 

where Θ=δ*t, λ=q, δ is the difference between the objective 

values of the initial and neighborhood solutions, t is an iteration counter, and q is a control 

parameter that represents consecutive non-improving iterations. The q parameter controls the 

acceptance of worse solutions which controls the diversification and intensification process. In 

this work, the initial value of q is set to 1 (q=1) and it will be increased by one (q=q+1) after a 

certain number of a consecutive non-improving iterations [9], [10]. Once a worse solution is 

accepted, q will be reset to 1. In EMCQ, the probability of accepting a worse solution 

decreases as the number of iterations t, increases. However, if there is no improvement for a 

certain number of consecutive iterations, then the probability of accepting a worse solution will 
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increase according to the quality of the generated neighborhood solution, q and t. The pseudo-

code of the EMCQ is presented in Figure 1 [6], [11].  

 

To improve the effectiveness of the EMCQ in dealing with various instances and also to cope 

with search landscape changes, we utilize three different neighbourhood operators; where at 

each iteration of EMCQ a random neighbourhood operator is selected. The utilized 

neighbourhood operators for the BAP are: 

 

- Nop1: select one vessel at random and move it to the least cost berth (least handling 
time).   

- Nop2: randomly select two vessels and swap their berths if feasible.  

- Nop3: select the highest cost vessel and move it to another feasible berth. 

 

Generate initial solution, Sol; 

Calculate the objective function for Sol, f(Sol); 

Set best solution, Solbest← Sol; f (Solbest) ← f (Sol); 

Set maximum consecutive number of non-improvement, Max_no-improvement; 

Set no-improvement counter ← 0; 

Set q = 1; current iteration counter, t = 0, Max_no_iteration; 

      Do while (t < Max_no_iteration) 

Generate a neighborhood solution, Sol*  

Calculate the objective function of neighborhood solution, f(Sol*); 

if (f (Sol*) < f(Sol))   // better solution in term of the objective value 

Sol ← Sol*;  

f(Sol) ← f (Sol*); 

q = 1; 

no-improvement = 0; 

if (f (Sol*) < f (Solbest)) // update the best solution  

Solbest← Sol*; 

f (Solbest)← f (Sol*); 

               end if 

              else  // accept worse solutions based on the acceptance probability  

Calculate δ = f(Sol*)-f(Sol); 

Generate a random number RandNum in [0,1]; 

if (RandNum ≤ e-δ*t/q) 

Sol ← Sol*;  

f (Sol)← f (Sol*); 

q = 1; 

no-improvement = 0; 

                                 else 

no-improvement++; 

if (no-improvement = Max_no-improvement) 

q++; 

no-improvement = 0; 

end else  

       t++; 

end while; 

Return the best solution, Solbest and f(Solbest)  

Figure 1. The pseudo-code of the EMCQ 

 

3.3 Experiments and results 

EMCQ was tested on BAP benchmark instances that have been introduced in [2] and widely 

used by other researchers. The benchmark has 30 different instances (denoted as i1 to i30); 

each instance contains 30 vessels and 13 berths. We run EMCQ 31 times for each instance. 

The EMCQ parameters were set based on a preliminary test as follows: t=1, q=1, 

Max_no_iteration =1,000,000 and Max_no-improvement =1,000. The results obtained by 
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EMCQ (out of 31 runs) and the current state of the art algorithms reported in the literature are 

presented in Table 1. For each algorithm, we report, for each instance, the best obtained results 

(best objective value) and the computational time (seconds). In the table, the third column 

(Opt.) represents the optimal value for each instance [3] and last row represents the average 

(Avg.). The best results obtained are shown in bold. In this work, we compare the effectiveness 

of EMCQ with the following algorithms that have obtained the best known results as 

represented in the scientific literature: 

 
 

- Generalized set partition programming (GSPP) [3].  

- Tabu search (TS) algorithm [2]. 

- Column generation (CG) algorithm [12]. 

- Clustering search (CS) [4]. 

- Particle swarm optimization (PSO) [5].  

 
 

The results in Table 1 illustrates that, EMCQ obtained the optimal values for all tested 

instances, i.e., the best results of the EMCQ are the same as those produced by the GSPP as 

well as CS and PSO on all tested instances. EMCQ outperforms TS on 18 and CG on 4 

instances, while producing the same results as TS and CG on 18 and 24 out of 30 instances, 

respectively. Considering the computational time, EMCQ outperforms other algorithms on all 

tested instances (see Table 1) and the average computational time of EMCQ is relatively small 

(3.82, see last row in Table 1). Overall, the EMCQ has a fewer parameters that need to be 

tuned in advance compared to other algorithms which indicates that EMCQ is an effective and 

efficient algorithm for the BAP.  

 

Table 1 The results of EMCQ compared to the state of the art methods 

Inst. 
EMCQ GSPP TS CG CS PSO 

Best Time Opt. Time Best Best Time Best Time Best Time 

i01 1409 6.11 1409 17.92 1415 1409 74.61 1409 12.47 1409 11.11 

i02 1261 5.2 1261 15.77 1263 1261 60.75 1261 12.59 1261 7.89 

i03 1129 4.3 1129 13.54 1139 1129 135.45 1129 12.64 1129 7.48 

i04 1302 6.03 1302 14.48 1303 1302 110.17 1302 12.59 1302 6.03 

i05 1207 3.11 1207 17.21 1208 1207 124.7 1207 12.68 1207 5.84 

i06 1261 4.32 1261 13.85 1262 1261 78.34 1261 12.56 1261 7.67 

i07 1279 3.07 1279 14.6 1279 1279 114.2 1279 12.63 1279 7.5 

i08 1299 4.65 1299 14.21 1299 1299 57.06 1299 12.57 1299 9.94 

i09 1444 2.72 1444 16.51 1444 1444 96.47 1444 12.58 1444 4.25 

i10 1213 2.01 1213 14.16 1213 1213 99.41 1213 12.61 1213 5.2 

i11 1368 4.11 1368 14.13 1378 1369 99.34 1368 12.58 1368 10.52 

i12 1325 6.52 1325 15.6 1325 1325 80.69 1325 12.56 1325 12.92 

i13 1360 6.53 1360 13.87 1360 1360 89.94 1360 12.61 1360 11.97 

i14 1233 3.47 1233 15.6 1233 1233 73.95 1233 12.67 1233 7.11 

i15 1295 2.96 1295 13.52 1295 1295 74.19 1295 13.8 1295 8.3 

i16 1364 4.11 1364 13.68 1375 1365 170.36 1364 14.46 1364 8.48 

i17 1283 2.13 1283 13.37 1283 1283 46.58 1283 13.73 1283 5.66 

i18 1345 3.18 1345 13.51 1346 1345 84.02 1345 12.72 1345 8.02 

i19 1367 4.06 1367 14.59 1370 1367 123.19 1367 13.39 1367 11.42 

i20 1328 5.13 1328 16.64 1328 1328 82.3 1328 12.82 1328 12.28 

i21 1341 3.06 1341 13.37 1346 1341 108.08 1341 12.68 1341 7.11 

i22 1326 3.82 1326 15.24 1332 1326 105.38 1326 12.62 1326 7.94 

i23 1266 3.08 1266 13.65 1266 1266 43.72 1266 12.62 1266 7.25 

i24 1260 1.98 1260 15.58 1261 1260 78.91 1260 12.64 1260 5.67 

i25 1376 3.07 1376 15.8 1379 1376 96.58 1376 12.62 1376 7.13 

i26 1318 3.08 1318 15.38 1330 1318 101.11 1318 12.62 1318 7.44 

i27 1261 2.06 1261 15.52 1261 1261 82.86 1261 12.64 1261 6.16 

i28 1359 4.84 1359 16.22 1365 1360 52.91 1359 12.71 1359 11.52 

i29 1280 3.07 1280 15.3 1282 1280 203.36 1280 12.62 1280 8.11 

i30 1344 2.86 1344 16.52 1351 1344 71.02 1344 12.58 1344 7.13 

Avg 1306.8 3.82 1306.8 14.98 1309.7 1306.9 93.99 1306.8 12.79 1306.8 8.17 
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4. Conclusion 

In this work, we have proposed an Exponential Monte-Carlo with Counter (EMCQ) local 

search algorithm for the berth allocation problem. The proposed algorithm starts with an initial 

solution and iteratively improves it for a certain number of iterations. At each iteration, EMCQ 

uses a neighborhood operator to generate a neighborhood solution. Improving neighborhood 

solutions are always accepted, while worse solutions are adaptively accepted based on the 

quality of the incumbent solution, the search time and the number of consecutive non-

improving iterations. To improve the effectiveness of the proposed EMCQ, we utilized three 

different neighbourhood operators to deal with a different instance characteristics. The 

proposed algorithm has been tested on berth allocation problem benchmark instances that have 

been used by other researchers in the literature. Results demonstrated that the proposed 

algorithm is very promising and can be used to produce good quality solutions compared to 

state of art methods.  
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