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1. Introduction  
 

Many real world problems are dynamic in the sense that changes occur during the optimisation 

process.These problems are more convincing in real world applications than the static ones. This 

is due to the fact that most of the real world applications are dynamic as the problems differ in 

the changes that occur in the optimisation environment or the size of the problem increases from 

time to time [1, 2]. This phenomenon can be illustrated by the following example of a delivery 

company having to render a service to a set of customers where usually, the number of customers 

to be served changes on the service schedule due to the length of the contract period. 

Furthermore, the service that is demanded from the customer could also vary over time. This sort 

of situation could be considered to be a dynamic problem because the parameters would only be 

revealed during the delivery process where the number of customers or the demand of the 

product may increase or decrease.  

 

Much effort has been made to solve dynamic optimisation problems over the recent decade [3]. 

In solving this problem, a solution method that is able to keep track of the changes is much 

needed. In addition the solution method should be adaptable in line with the current changes. In 

contrast to static optimisation problems (where the aim is to find the global optima), the goal of 

dynamic optimisation problems is to find not only the global optima but also to keep track of 

changes that usually occur during the optimisation process. 

 

Generally, one could easily remark that the success of these algorithms is due to the incorporated 

mechanism that manages to maintain the population diversity when dealing with the changes [4]. 

Even though at present, there are a number of population-based methods applied on dynamic 

optimisation problems, there is still plenty of room for further research work, since the nature of 

this problem usually requires an efficient and effective algorithm that would quickly respond to 

changes.  

 

Harmony search algorithm has been used to successfully solve a number of static optimization 

problems [5-8]. In this work, we investigate the applicability of the harmony search algorithm in 
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tackling binary dynamic optimisation problems where four standard binary test functions are 

used. Based on the performance obtained, the proposed approach will later be employed on 

dynamic combinatorial optimisation problems such as dynamic vehicle routing problems and 

dynamic job shop scheduling problems.  

2. Solution Approach 
 

In this section, we present our proposed Harmony Search Algorithm (HSA) for solving binary 

dynamic optimisation problems. In this work, different mechanisms have been used to maintain 

the population diversity and their hybridisation with the HSA. This is referred to as Hybrid 

Harmony Search. HSA is one of the recent stochastic population-based meta-heuristic 

optimisation algorithms proposed by Geem et al. [9]. HSA has five steps as depicted in Fig. 1.  
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Figure1: Steps in HSA 

In Step 1, parameters of HSA (as in Table 1) are initialised. Harmony Memory (HM) is 

initialised and evaluated in Step 2. Step 3 is an improvisation process where Harmony Memory 

Consideration Rate (HMCR) parameter is used during the improvisation process in order to 

determine whether the value of a decision variable of a new harmony will be selected from the 

HM or will it be generated at random from the possible range that takes a value between [0, 1]. 

The probability of randomly selecting the decision variable value from the possible range is 

given as 1-HMCR. Pitch Adjusting Rate (PAR) parameter is used to decide either the values of 

decision variables (that have been selected from the HM) will be modified or maintained. PAR 

takes a value between [0, 1]. In Step 4, the HM will be updated and if the termination criterion is 

satisfied then the process will be terminated (Step 5). 

 

In order to cope with the dynamic changes, harmony search algorithm needs to keep track of the 

changes during the search process. This is needed because the changes in the problem may 

change the current local optima into global optima and vice versa [1]. In addition, it is also 

shown in the literature that the developed algorithms for stationary problems cannot be directly 

used to solve dynamic problems [1, 10]. 

 

Therefore, to handle this problem, the HSA has been hybridised with three population diversity 

mechanisms, (i) HSA with random immigrant, HSA-I, (ii) HSA with memory mechanism, HSA-

M, and (iii) HSA with memory based immigrant mechanism, HSA-MI.  

 

 HSA-I: First mechanism where HSA is hybridised with random immigrant. In this 

approach, at each of the generation a subset of solutions is generated at random and is 

used to replace the worst solutions in the HM. In this paper, the number of solutions are 

fixed to be replaced at every iteration as rs=HMS*0.2 where rs represents the number of 

replaced solutions. 

 

 HSA-M: Second mechanism where HSA is hybridised with a memory mechanism. In 

this approach, a subset of best solutions is kept and will be re-inserted in the HM once 

changes are detected. 

 

 HSA-MI: In the third mechanism where HSA is hybridised with a random immigrant 

and a memory based mechanism in order to maintain the diversity of HM. 

 

 

3. Results and Discussions 
 

The performance of the proposed approaches is verified on four well-known binary dynamic 

optimisation test functions i.e. OneMax, Plateau, Royal Road, and Deceptive. The parameter 

values of HSA which is based on our preliminary tests are presented in Table 1. 

 

Table 1 HSA parameter values 

Parameters Description Tested range Suggested value 

HMS Harmony memory size HMS= 1 to 100 10-200 100 
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HMCR Harmony memory consideration rate...  0 < HMCR < 1  0.1-0.99 0.6 

RCR Random consideration rate     - RCR=1-HMCR 

PAR Pitch adjustment rate  0 < PAR < 1  0.1-0.99 0.3 

NI Number of improvisations or iterations  - 500000 function evaluations  

 

Our hybridisation approaches are compared against the well-known methods in the literature. The 

algorithms in comparison are presented in Table 2. 

 

Table 2 Acronyms of compared methods 
# Symbol  References 

1 MIGA  [6] 

2 MEGA  [7] 

3 AHMA  [1] 

4 MRIGA  [6] 

 

In order to measure the performance of our proposed algorithm the overall offline performance 

(the best-of-generation fitness) is calculated over 30 runs (with different initial solutions and 

seeds) based maximisation of Eq. 1.  

 

                                                                                                                                                         (1) 

 

 

where G is the total number of generations, N is the total number of runs and FBOGij is the best of 

generation fitness of generation i of run j. Our results as well as other methods in comparison are 

presented in Table 3. 

 

Table 3: Comparison of Results 
Function 

name 

HSA-I HSA-M HSA-MI % 

Deviation 

MIGA MEGA AHMA MRIGA 

OneMax 91.67 90.42 96.01 ** 94.0 79.3 95.89 80.8 

Plateau 72.21 68.41 84.91 ** - - 62.88 - 

Royal Road  64.76 63.96 66.19 ** - - 52.52 - 

Deceptive 76.39 73.11 85.97 ** 71.1 83.1 85.75 68.6 

      ‘-’: no results are reported. ‘**’: our algorithm is better than others. 

 

 

As shown the in Table 3, HSA-MI outperforms other methods in all test functions (presented in 

bold), in which we believe this is due to the idea of  of hybridising a random immigrant and a 

memory based mechanism in order to maintain the harmony memory (population) diversity. 

 

 

4. Dynamic Optimisation Problems and Its Relevancy to 

Timetabling Problems 
 

Dynamic optimisation problems however, present a greater challenge to the research community 

since the problem parameters are either revealed or change during the course of the on-going 

10th International Conference of the Practice and Theory of Automated Timetabling 
PATAT 2014, 26-29 August 2014, York, United Kingdom

571



optimization [4]. These problems are more convincing in real world applications than the static 

ones. This is due to the fact that most of the real world applications are dynamic, as the problems 

in the sense that the environment is subjected to changes or the size of the problem increases 

from time to time [11]. 

 

Timetabling problems have been frequently studied because of their wide range of applications 

such as school timetabling, transport scheduling, job shop scheduling, vehicle routing, and 

patient admission scheduling problems. In timetabling problems, two main difficulties are 

encountered: (i) often over-constrained and optimisation criteria are hard to define; (ii) 

intrinsically dynamic where activities, resources or constraints are sometimes unknown or can 

often change at the last moment [12]. 

 

The relevancy between dynamic optimisation problems with timetabling problems can be 

expressed through examples on: 

 School timetabling: the dynamic part of the schedule is more related to logistic needs and 

unexpected events such as link with timetabling of other years in terms sharing common 

resources and, inside and outside teachers availability [12]. 

 Train scheduling: the information such as train arrival times, train lengths, train speeds are 

available before solving the problem in the static scheduling environment. However, in 

dynamic scheduling environment (which mimics the real-world problem), the information of 

only arrived trains is considered known, then the schedule of the new train and the trains 

currently in the network should be generated, given no information of later trains [13]. 

 Job shop scheduling: most manufacturing systems operate in dynamic environment where 

unexpected disruptions occur during the manufacturing process such as machine 

breakdowns, material shortage, random job releases, and job cancellations and due date and 

time processing changes. The disruption will produce uncertainty in the sequence of 

operation, i.e. the time taken to repair the broken machine [14].  

 Dynamic vehicle routing: dynamic scenarios have become more common in vehicle routing. 

The most common source of dynamism in vehicle routing is the online arrival of customer 

requests (demand for goods and services) during the operation, dynamic travel and service 

time and vehicle availability, and breakdown of vehicles. These source of dynamism caused 

schedulers to update the generated timetable [15, 16].   

 Patient admission scheduling: it concerns in assigning patients to bed in a hospital. In order 

to tailor real scenario, several real-world features, such as the presence of emergency 

patients, uncertainty in the length of stay, and the possibility of delayed admissions are 

included [17]. 

 

The above examples show the important on tackling dynamic optimisation problems since most 

of the real world problems are dynamic in nature. These disruptions or random occurrences lead 

timetable officers to develop a new schedule from scratch or reschedule the existing schedule in 

order to cater the changes. 

 

5. Conclusion and Future Work 
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The overall goal of the work presented in this paper is to investigate the performance of the 

hybrid harmony search algorithm in maintaining the population diversity in addressing binary 

dynamic optimisation problems. In this work, three kinds of population diversity mechanisms are 

presented i.e. the random immigrant, memory mechanism, and memory based immigrant 

mechanism. Initial experiments show that the harmony search with memory based immigrant 

mechanism outperforms two hybrid approaches presented here, and also managed to obtain 

better offline performance in comparison to other available approaches in the literature. For 

future work, the proposed method will be investigated on other dynamic combinatorial 

optimization problems such as dynamic vehicle routing and dynamic job shop scheduling 

problems.  
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