

Do it yourself (DIY) optimisation
approach to practical timetabling

Yuri Bykov, Sanja Petrovic, Christos Braziotis

Nottingham University Business School

Jubilee Campus, Wollaton Road, Nottingham NG8 1BB, UK

yuri.bykov, sanja.petrovic, christos.braziotis@nottingham.ac.uk

This abstract describes our work in progress towards facilitating a greater uptake

of metaheuristic optimisation algorithms in practice. Many researchers and

practitioners have recognised that there is still a considerable gap between theory

and practice in metaheuristic optimisation. Although this gap exists in many

application areas, the educational timetabling is the field where it was clearly

formulated (see McCollum 2007).

One of the causes of this gap is the inflexibility of the existent timetabling

applications, i.e. they cannot enfold the high variety of real-world requirements

and restrictions necessary for a good timetable. A survey by Burke et al. (1996)

revealed that students and administrative preferences vary greatly among

universities. This means that a computer-aided timetabling system developed in

one educational institution is unsuitable for another one. Therefore, a common

solution here is to order made-to-measure timetabling systems separately tailored

for each particular university. This becomes very expensive, time-consuming and

inflexible approach, especially when some alterations have to be included into

existing systems. As an alternative to that, some universities develop in-house

timetabling systems. However, this solution requires a capacity for programming

skills by timetabling department staff.

In this study we propose a third variant, which constitutes a middle ground

between the above-mentioned extremes. It can be viewed as DIY (do it yourself)

optimisation approach because it is more flexible than the first approach but

requires fewer user’s skills than the second one. The main idea of the approach is

based on the two following observations.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

579

Our first observation is that almost in every timetabling (as well as scheduling,

rostering, etc.) research paper we can find a formal definition of a problem as a set

of formulas. For example, the well-known Carter’s formulation of the Exam

Timetabling Problem where objective function refers to the proximity of exams

(see Carter et al. 1996) is expressed in a mathematical model as follows (taken

from Burke et al. 2004):

minimize:   


 


1

1 1

N

i

N

ij

jiij ttproximityc

where:  




 




otherwise

ttif
ttproximity ji

tt

ji

ji

0

512
5

subject to clash-free requirement:   0
1

1 1

 


 

N

i

N

ij

jiij ttclashc

where:  


 


otherwise

ttif
ttclash

ji

ji
0

1

In these formulas N is the number of exams, cij are the elements of NxN conflict

matrix, which indicate the numbers of students sitting exams i and j together and ti

is the timeslot of i
th

 exam. However, in most cases such formulas are given for

reference only and are not used explicitly in the supplementary software

(experimental or end-user ones). They just formally describe the rules, which are

implemented in the form of an algorithm, which de-facto represents a more

complex procedure than just few formulas. Our second observation is that in other

areas there exists software that explicitly operates with formulas for different

purposes, such as Matlab for mathematical operations, CPLEX for integer

programming or Microsoft Excel for tabbed calculations. By combining these two

observations we came up with an idea of the explicit use of mathematical

formulas in metaheuristic optimisation as well. It should be noted that the generic

idea of embedding a CPLEX-like functionality for increasing the flexibility of

metaheuristics is rather straightforward and was circulated in private

communications throughout the research community. Therefore, the novelty of

our particular contribution to that idea is its effective practical implementation.

To implement this idea in practice a compiler-like intelligent engine was

developed, which recognises mathematical notations for the cost function and

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

580

constraints, verifies them and then prepares them for the use within metaheuristic

search algorithm. The formulas can be entered in a quite transparent machine-

readable form, which follows common rules used in existing systems (e.g. MS

Excel). The detailed description of the rules can be downloaded together with our

software. For example, the formulas for the cost function presented above can be

entered as follows:

cost : sum[i,1,n-1,sum(j,i+1,n,c(i,j)*proximity)]

proximity : when[(1<=absdt) and (absdt<=5),pow(2,5-absdt),0]

absdt : abs[t(i)-t(j)]

The corresponding constraints can have the following form:

constraint : sum[i,1,n-1,sum(j,i+1,n,c(i,j)*clash)]

clash : when[t(i)=t(j),1,0]

As a result, the user needs just to write five formulas to solve a timetabling

problem with Carter’s cost/constraint. Moreover, the user is free to change them

or enter completely new ones according to his/her own requirements. If, for

example, additionally to the clash-free requirement we need to schedule exam #1

before exam #2 and the number of timeslots should not be more than 15, then the

constraint definition could be re-written as:

constraint : clash_free and [t(1)<t(2)] and (max[i,1,n,t(i)]<=15)

clash_free : sum[i,1,n-1,sum(j,i+1,n,c(i,j)*clash)]

clash : when[t(i)=t(j),1,0]

Our engine recognises virtually any type of cost and constraints, which can be

expressed by formulas. This way of cost/constraints specification is much simpler

than in-house programming, while at the same time is much more flexible than the

ordering of made-to-measure software.

In our particular implementation the engine represents a run-time library, which

can be embedded into any optimisation algorithm, not necessary only for

timetabling problems. In each case, the engine should be adjusted to the particular

problem and solution representations. In the above example (uncapacitated exam

timetabling problem), the compiler recognises variables n and c as the elements of

the problem statement and variable t as the element of solution. However, if one

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

581

would like to solve the capacitated problem, the engine should be adjusted in

order to recognise the room-related variables.

In order to demonstrate the simplicity and flexibility of the proposed approach and

to prove that it is workable we have embedded the prototype cost/constraints

compiler into our Vehicle Routing Problem (VRP) solver (the choice of a problem

was motivated by a good visual characteristics of VRP solutions, but we

anticipate the variant for Exam Timetabling to be ready soon). Figure 1 illustrates

a built-in formula editor where the user can enter or change his/her formulas.

After pressing the button “Compile the code” the system produces error checks

and if no errors are found, incorporates these formulas to the search procedure. In

this example, the cost formula represents an amount of CO2 emissions, but

certainly, the user can enter here an unlimited number of possible cost functions.

Fig 1. The cost/constraints entered as formulas

We expect that the variation of the cost/constraints definition could affect the

performance of a core optimization technique: therefore the solver offers to

choose the preferable one among 6 available metaheuristics: Hill-Climbing,

Simulated Annealing, Tabu Search, Great Deluge Algorithm, Late Acceptance

Hill-Climbing and Step Counting Hill Climbing (the details of the last two ones

can be found in (Burke and Bykov 2008) and (Bykov and Petrovic 2013)). Also

the user can select appropriate algorithmic parameters, initialization,

restarting/reheating strategies as well as the type of moves (neighborhood

operators).

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

582

The prototype solver can be downloaded from:

http://www.yuribykov.com/MHsolver/. It works in MS Windows with a minimum

hardware configuration and does not require an installation procedure.

In order to test the practical effectiveness of the proposed approach, we used our

solver as a part of the coursework for the undergraduate module Management

Science for Business Decisions at the Nottingham University Business School.

This served as a pilot study to assess the usability of our approach in solving the

given VRP problems and it involved 10 students without programming skills and

with different mathematical background. Among other tasks the students were

asked to solve the variants with known and unknown formulas for

cost/constraints. The results revealed that all students were able to transform the

known formulas to the machine-readable form and enter them into the system.

However, some students were not able to solve a more complex task where the

formulas are not given but cost/constraints are specified in a textual description.

Here 6 out of the 10 students were able to derive a correct formula. These

preliminary results suggest that a particular level of mathematical skill/experience

is required for the successful use of our approach. Thus, we see the development

of a proper training methodology as an important direction of increasing the

practical value of our approach.

References:

Burke, E.K., D. Elliman, P. Ford, R. Weare. 1996. Examination timetabling in British universities:

a survey. Practice and Theory of Automated Timetabling, Springer Lecture Notes in Computer

Science 1153, 76-90.

Burke, E.K., Y. Bykov, J. Newall, S. Petrovic. 2004. A time-predefined local search approach to

exam timetabling problems. IIE Transactions 36, 509-528.

Burke, E.K., Y. Bykov. 2008. A late acceptance strategy in hill-climbing for exam timetabling

problems. Proceedings of the 7
th

 International Conference on the Practice and Theory of

Automated Timetabling PATAT 2008, Montreal, Canada, August 2008.

Bykov, Y., S. Petrovic. 2013. An initial study of a novel Step Counting Hill Climbing heuristic

applied to timetabling problems. Proceedings of the 6
th

 Multidisciplinary International Scheduling

Conference MISTA 2013, Gent, Belgium, August 2013.

Carter, M.W., G. Laporte, S. Lee. 1996. Examination timetabling: algorithmic strategies and

applications. Journal of the Operational Research Society 47, 373-383.

McCollum, B. 2007. A perspective on bridging the gap between theory and practice in university

timetabling. Practice and Theory of Automated Timetabling VI, Springer Lecture Notes in

Computer Science 3867, 3-23.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

583

http://www.yuribykov.com/MHsolver/

