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This abstract describes our work in progress towards facilitating a greater uptake 

of metaheuristic optimisation algorithms in practice. Many researchers and 

practitioners have recognised that there is still a considerable gap between theory 

and practice in metaheuristic optimisation. Although this gap exists in many 

application areas, the educational timetabling is the field where it was clearly 

formulated (see McCollum 2007).  

 

One of the causes of this gap is the inflexibility of the existent timetabling 

applications, i.e. they cannot enfold the high variety of real-world requirements 

and restrictions necessary for a good timetable. A survey by Burke et al. (1996) 

revealed that students and administrative preferences vary greatly among 

universities. This means that a computer-aided timetabling system developed in 

one educational institution is unsuitable for another one. Therefore, a common 

solution here is to order made-to-measure timetabling systems separately tailored 

for each particular university. This becomes very expensive, time-consuming and 

inflexible approach, especially when some alterations have to be included into 

existing systems. As an alternative to that, some universities develop in-house 

timetabling systems. However, this solution requires a capacity for programming 

skills by timetabling department staff. 

 

In this study we propose a third variant, which constitutes a middle ground 

between the above-mentioned extremes. It can be viewed as DIY (do it yourself) 

optimisation approach because it is more flexible than the first approach but 

requires fewer user’s skills than the second one. The main idea of the approach is 

based on the two following observations.  
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Our first observation is that almost in every timetabling (as well as scheduling, 

rostering, etc.) research paper we can find a formal definition of a problem as a set 

of formulas. For example, the well-known Carter’s formulation of the Exam 

Timetabling Problem where objective function refers to the proximity of exams 

(see Carter et al. 1996) is expressed in a mathematical model as follows (taken 

from Burke et al. 2004): 
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In these formulas N is the number of exams, cij are the elements of NxN conflict 

matrix, which indicate the numbers of students sitting exams i and j together and ti 

is the timeslot of i
th

 exam. However, in most cases such formulas are given for 

reference only and are not used explicitly in the supplementary software 

(experimental or end-user ones). They just formally describe the rules, which are 

implemented in the form of an algorithm, which de-facto represents a more 

complex procedure than just few formulas. Our second observation is that in other 

areas there exists software that explicitly operates with formulas for different 

purposes, such as Matlab for mathematical operations, CPLEX for integer 

programming or Microsoft Excel for tabbed calculations. By combining these two 

observations we came up with an idea of the explicit use of mathematical 

formulas in metaheuristic optimisation as well. It should be noted that the generic 

idea of embedding a CPLEX-like functionality for increasing the flexibility of 

metaheuristics is rather straightforward and was circulated in private 

communications throughout the research community. Therefore, the novelty of 

our particular contribution to that idea is its effective practical implementation. 

 

To implement this idea in practice a compiler-like intelligent engine was 

developed, which recognises mathematical notations for the cost function and 
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constraints, verifies them and then prepares them for the use within metaheuristic 

search algorithm. The formulas can be entered in a quite transparent machine-

readable form, which follows common rules used in existing systems (e.g. MS 

Excel). The detailed description of the rules can be downloaded together with our 

software. For example, the formulas for the cost function presented above can be 

entered as follows:  

cost : sum[i,1,n-1,sum(j,i+1,n,c(i,j)*proximity)] 

proximity : when[(1<=absdt) and (absdt<=5),pow(2,5-absdt),0] 

absdt : abs[t(i)-t(j)] 

 

The corresponding constraints can have the following form: 

constraint : sum[i,1,n-1,sum(j,i+1,n,c(i,j)*clash)] 

clash : when[t(i)=t(j),1,0] 

 

As a result, the user needs just to write five formulas to solve a timetabling 

problem with Carter’s cost/constraint. Moreover, the user is free to change them 

or enter completely new ones according to his/her own requirements. If, for 

example, additionally to the clash-free requirement we need to schedule exam #1 

before exam #2 and the number of timeslots should not be more than 15, then the 

constraint definition could be re-written as: 

constraint : clash_free and [t(1)<t(2)] and (max[i,1,n,t(i)]<=15) 

clash_free : sum[i,1,n-1,sum(j,i+1,n,c(i,j)*clash)] 

clash : when[t(i)=t(j),1,0] 

 

Our engine recognises virtually any type of cost and constraints, which can be 

expressed by formulas. This way of cost/constraints specification is much simpler 

than in-house programming, while at the same time is much more flexible than the 

ordering of made-to-measure software.   

  

In our particular implementation the engine represents a run-time library, which 

can be embedded into any optimisation algorithm, not necessary only for 

timetabling problems. In each case, the engine should be adjusted to the particular 

problem and solution representations. In the above example (uncapacitated exam 

timetabling problem), the compiler recognises variables n and c as the elements of 

the problem statement and variable t as the element of solution. However, if one 
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would like to solve the capacitated problem, the engine should be adjusted in 

order to recognise the room-related variables. 

 

In order to demonstrate the simplicity and flexibility of the proposed approach and 

to prove that it is workable we have embedded the prototype cost/constraints 

compiler into our Vehicle Routing Problem (VRP) solver (the choice of a problem 

was motivated by a good visual characteristics of VRP solutions, but we 

anticipate the variant for Exam Timetabling to be ready soon). Figure 1 illustrates 

a built-in formula editor where the user can enter or change his/her formulas. 

After pressing the button “Compile the code” the system produces error checks 

and if no errors are found, incorporates these formulas to the search procedure. In 

this example, the cost formula represents an amount of CO2 emissions, but 

certainly, the user can enter here an unlimited number of possible cost functions.   

 

Fig 1. The cost/constraints entered as formulas 

 

We expect that the variation of the cost/constraints definition could affect the 

performance of a core optimization technique: therefore the solver offers to 

choose the preferable one among 6 available metaheuristics: Hill-Climbing, 

Simulated Annealing, Tabu Search, Great Deluge Algorithm, Late Acceptance 

Hill-Climbing and Step Counting Hill Climbing (the details of the last two ones 

can be found in (Burke and Bykov 2008) and (Bykov and Petrovic 2013)). Also 

the user can select appropriate algorithmic parameters, initialization, 

restarting/reheating strategies as well as the type of moves (neighborhood 

operators).  
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The prototype solver can be downloaded from: 

http://www.yuribykov.com/MHsolver/. It works in MS Windows with a minimum 

hardware configuration and does not require an installation procedure.   

 

In order to test the practical effectiveness of the proposed approach, we used our 

solver as a part of the coursework for the undergraduate module Management 

Science for Business Decisions at the Nottingham University Business School. 

This served as a pilot study to assess the usability of our approach in solving the 

given VRP problems and it involved 10 students without programming skills and 

with different mathematical background. Among other tasks the students were 

asked to solve the variants with known and unknown formulas for 

cost/constraints. The results revealed that all students were able to transform the 

known formulas to the machine-readable form and enter them into the system. 

However, some students were not able to solve a more complex task where the 

formulas are not given but cost/constraints are specified in a textual description. 

Here 6 out of the 10 students were able to derive a correct formula. These 

preliminary results suggest that a particular level of mathematical skill/experience 

is required for the successful use of our approach. Thus, we see the development 

of a proper training methodology as an important direction of increasing the 

practical value of our approach. 
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