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Abstract We investigate an extended problem formulation of the Production
Leveling Problem (PLP), which was recently introduced in the literature. For
the PLP problem the task is to assign orders to production periods such that
the load is balanced, capacity limits are not exceeded and the order’s priorities
are considered. The extended problem (PLP-OSRC) introduced in this paper
additionally includes order-splitting, resource constraints and due dates. We
provide a mixed integer programming formulation for the PLP-OSRC based
on the existing model for the PLP and evaluate it with a state-of-the-art MIP
solver. To solve practically sized instances we apply a local search approach
based on simulated annealing and propose two innovative neighborhood moves.
We compare our approaches on two sets of randomly generated instances and
show that the simulated annealing approach provides competitive results to
MIP for the smaller instances. Moreover, it provides good solutions for very
large instances that could not be solved by our MIP model in a reasonable
amount of time.
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1 Introduction

As many modern-day factories in the area of industrial manufacturing migrate
towards full automation, a strong need for efficient automated production
planning systems becomes more and more apparent. Although many known
practical planning problems deal with short-term scheduling and long-term
planning tasks, there is also an important need for mid-term planning systems
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that aim to efficiently distribute orders created by long-term planning systems
into smaller short-term scheduling problems.

Recently, we have introduced such a mid-term planning problem called the
production leveling problem (PLP) in [11,10]. The PLP takes a number of
jobs as its input and aims to evenly distribute the production orders in an
optimized plan over a given planning horizon. Finding a balanced distribution
of the workload over the set of production periods is mainly motivated by the
idea that solutions to the PLP will lead to improved short-term schedules that
efficiently utilize the production capacities in each period and to encourage
just-in-time manufacturing.

Applications for the PLP arise in different areas of the industry. For ex-
ample, a practical application of the PLP has been deployed by our industry
partners in electronic component manufacturing, where it is desired to assign
a well balanced product mix to each production period. As setup costs that
arise between the manufacturing of different product families are not too high
in this case, a well balanced product mix leads to increased capacity utilization
as well as decreased storage- and transport costs as just-in-time production
in the sense of heijunka [3] is encouraged. Several practical instances for this
application have been introduced and are available1.

Leveling problems similar to the PLP have been studied in other applica-
tion domains in the past like for example the balanced academic curriculum
problem [2,4], nurse scheduling [7,9,8] or assembly line balancing [1]. However,
in contrast to other leveling problems the PLP includes the consideration of
order priorities in its objective function, which is of high importance for prac-
tical production planning problems.

Previously, we have shown that the PLP is NP-hard and have proposed
metaheuristic approaches as well as an exact approach based on mixed integer
programming in [11]. Although these existing solution methods can be used
to approach practically sized instances of the problem, some real life mid-
term planning scenarios cannot be tackled with the standard PLP problem
formulation, as it does not consider the availability of resources used during
production. Furthermore, the original specification of the PLP does not allow
to split given orders into multiple sub orders, which can in some scenarios
improve the quality of solutions.

In this paper, we therefore introduce an extended problem formulation
of the PLP that supports order-splitting and the consideration of resource
constraints called the production levelling problem with order-splitting and
resource constraints (PLP-OSRC). In addition to providing a formal specifica-
tion to the problem, we extend the mixed integer programming formulation for
the PLP to model the PLP-OSRC, which allows us to approach instances of the
extended problem with state-of-the-art mixed integer programming solvers.
Furthermore, we propose two innovative neighborhood moves that we utilize
within a metaheuristic approach based on simulated annealing to solve very
large realistically sized instances of the PLP-OSRC. Finally, we implement

1 https://www.dbai.tuwien.ac.at/staff/jvass/production-leveling/

262

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume I

https://www.dbai.tuwien.ac.at/staff/jvass/production-leveling/


Solving the Production Leveling Problem (PLP-RCOS)

all of our proposed methods and perform a large number of experiments to
empirically evaluate the performance of the investigated solution approaches.

The remainder of the paper is structured as follows: Section 2 briefly re-
views the formal problem specification of the PLP and then gives a detailed
formal specification of the PLP-OSRC. Afterwards, we propose the integer
programming formulation for the extended problem and describe the details
absout the metaheuristic approach and the novel neighborhood moves in Sec-
tion 3. In Section 4 we give an overview of all conducted experiments and
discuss computational results before we give concluding remarks in Section 5.

2 Problem Statement

In this section, we provide a description of the production leveling problem
with resource constraints and order-splitting (PLP-OSRC), which is a real-life
industrial planning problem that is concerned with evenly distributing a set
of orders over a planning horizon.

Recently, we introduced the production leveling problem (PLP) in [11]. The
main differences between the PLP and the extended problem, that we describe
in this paper, are that given orders are allowed to be split into multiple parts
and that additional resource constraints can be defined for the PLP-OSRC.

In the following, we first review the problem description for the PLP in
Section 2.1, before we later in Section 2.2 introduce the notion of order splits
and additional constraints of the extended problem.

2.1 The Production Leveling Problem

The input to the PLP contains a list of orders to be distributed over the
planning horizon, where each order defines a number of demanded items of a
particular product type that need to be produced. Furthermore, the impor-
tance of each order is defined by a given priority value.

The goal of the problem is to assign each order to a single period in the
given production horizon. A feasible solution needs to make sure that given
maximum production volumes for each of the periods are not exceeded, where
each period defines an overall maximum production volume and product type
specific maximum production volumes.

The following lists the formal parameters and decision variables to an in-
stance of the PLP:
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Input Parameters

K = {1, . . . , k} Set of orders, where k is the number of orders
M = {1, . . . ,m} Set of product types, where m is the number of

product types
N = {1, . . . , n} Set of periods, where n is the number of periods
c ∈ R+ the maximum overall production volume per period
ct ∈ R+ for each product type t ∈M the maximum

production volume per period
dj ∈ Z+ for each order j ∈ K its associated demand
pj ∈ Z+ for each order j ∈ K its associated priority
tj ∈ Z+ for each order j ∈ K the product type
d∗ ∈ Z+ the target production volume per period, i.e. 1

n

∑
j∈K dj

d∗t ∈ Z+ the target production volume per period for each
product type t ∈M , i.e. 1

n

∑
j∈K|tj=t dj

Variables

– A variable yj for each order j ∈ K determines in which period the order
shall be produced:

yj ∈ N ∀j ∈ K

– The total production volume for each period is stored in auxiliary variables
wi ∀i ∈ N :

wi =
∑
j∈K:
yj=i

dj ∀i ∈ N

– The total production volume for each product type and period is stored in
auxiliary variables wi,t ∀i ∈ N, t ∈M :

wi,t =
∑
j∈K:

yj=i∧tj=t

dj ∀i ∈ N, t ∈M

Hard Constraints

The following hard constraints impose restrictions on the maximum production
volumes for each period in the planning horizon:

– H1: The limit for the overall production volume is satisfied for each period:

∀i ∈ N wi ≤ c

– H2: The limit for the production volume of each product type is satisfied
for each period:

∀i ∈ N, t ∈M wi,t ≤ cp
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Objective Function

A multi-objective function which includes three objectives determines the qual-
ity of solutions to the PLP. Intuitively, an optimized production plan should
assign orders to periods such that the production volume is balanced between
the periods while trying to adhere to the production sequence which is implied
by the order’s priorities.

Therefore, the objectives for the PLP are defined as follows:

1. Minimize the sum of deviations of the planned production volume to the
average demand (i.e. the target value d∗) for each period, ignoring the
product types.

f1 =
∑
i∈N
|d∗ − wi| (1)

(2)

2. Minimize the sum of deviations of the production volume of each product
type to its respective mean target value d∗t , making sure that the production
of each product type is being leveled.

f2 =
∑
t∈M

(
1

d∗t
·
∑
i∈N
|d∗t − wi,t|

)
(3)

(4)

3. Minimize the number of times a higher prioritized order is planned for a
later period than a lower prioritized order, which we call a priority inver-
sion. This objective makes sure that it costs less to plan the production of
more important orders for earlier periods.

f3 =|
{

(i, j) ∈ K2 : yi > yj and pi > pj
}
| (5)

In order to combine the objectives (f1, f2, f3) into a single objective func-
tion each of the individual cost components is normalized as follows:

g1 =
1

n · d∗
· f1 (6)

g2 =
1

n ·m
· f2 (7)

g3 =
2

k · (k − 1)
· f3 (8)

The normalization ensures that g1 and g2 stay between 0 and 1 with a high
probability. Only for degenerated instances, where even in good solutions the
target is exceeded by factors ≥ 2 higher values are possible for g1 and g2. The
value of g3 is guaranteed to be ≤ 1 because the maximum number of inversions
in a permutation of length k is k · (k − 1)/2.
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The final objective function of the PLP is a weighted sum of the three
normalized objective functions, where user defined weights a1−−3 determine
the relative importance of each objective.

minimize g = a1 · g1 + a2 · g2 + a3 · g3 (9)

Figure 1 shows a small example instance of the PLP with five orders,
which are shown as boxes, where the box height corresponds to the order size.
The orders should be distributed over three production periods such that the
distances of the stacks of orders and the dashed target line is minimized and
no stack crosses the red line which represents the overall maximum production
volume.

Similar to the first example, Figure 2 shows a solution for a small example
instance with five orders. The numbers inside the orders this time determine
the order priorities, where a larger number indicates a higher importance. In
this case, it is undesirable that the red order is assigned to an earlier period
than the yellow or blue order. Whenever a pair of two orders is not planned
so that their priority values are descending over time they cause a priority
inversion in the production plan. The third objective of the PLP aims to
minimize the total number of priority inversions. In the example, a better
solution could be obtained by swapping the red order with the yellow one,
because it would eliminate both priority inversions.

O2

O1

O1

O2

O5

O4

O3

period 1 period 2 period 3

O5

O4

O3

Orders Example solution

O2

O1

O1

O2

O5

O4
O3

period 1 period 2 period 3

O5

O4

O3

Orders Example solution

Fig. 1: Example visualizing the effects of the first objective f1 that aims to
minimize the total deviation to the target value (i.e. the dashed line). The
solution shown in this example is optimal w.r.t. this objective.

2.2 The Production Leveling Problem with Order-Splitting and Resource
Constraints

The PLP as we described it in the previous section appears in many real-life in-
dustrial applications where production volumes are ought to be leveled evenly
over the planning horizon to keep the production process robust and efficient.
However, as it assumes that each order is indivisible, it cannot be used in any
practical context where single customer orders can actually be distributed over
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Orders Example solution
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Fig. 2: Example solution that contains two priority inversions. The numbers
in each box determine the priority value of the associated order.
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Fig. 3: Example solution, where the blue order (with priority 7) is split between
period 2 and 3. This way, we do not introduce any priority inversion and
nevertheless get a similarly good leveling as in the example before.

multiple periods in the planning horizon. Figure 3 shows an example why split-
ting orders can be sometimes useful: The additional flexibility that is obtained
by allowing orders to be split can help to create solutions that are good both in
terms of levelness and prioritization. Another shortcoming of the basic PLP in
practical environments is the absence of resource constraints, which prevents
us, for example, to take staffing and the availability of tools or machines into
account while distributing orders over production periods.

In this section, we therefore introduce a novel extension of the production
leveling problem that we call the production leveling problem with order-
splitting and resource constraints (PLP-OSRC). Instances to the PLP-OSRC
define the same parameters as specified for the PLP in Section 2.1, but include
additional parameters that determine how many splits per order are feasible
and provide the parameters about the additional constraints. The following
lists the additional input parameters for the PLP-OSRC:
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Input Parameters

R = {1, . . . , o} Set of secondary resources where o is the number of
secondary resources

pdmin
j ∈ N the earliest period to which an order j ∈ K can be assigned

without a penalty
pdmax

j ∈ N the latest period to which an order j ∈ K can be assigned
without a penalty

psmin
j ∈ {1, . . . , dj} the minimum size of any partition of order j ∈ K

pcmax
j ∈ Z+ the maximum number of partitions of order j ∈ K

ruj,r ∈ R+
0 the amount of usage of secondary resource r ∈ R by order

j ∈ K

rumin
r ∈ R+ the minimum penalty-free usage of resource r ∈ R in each

period
rumax

r ∈ R+ the maximum penalty-free usage of resource r ∈ R in each
period

Since a single order can be split and planned into multiple periods, the
decision variables of the PLP-OSRC have to capture additional information
than for the PLP. The following list defines the variables for the PLP-OSRC:

Variables

– Variables xi,j determine the amount of order j which is planned to be
produced in period i. If a variable xi,j > 0, we say that a partition of order
j is planned in period i.

xi,j ∈ Z+
0 ∀i ∈ N, j ∈ K

– Auxiliary variables ystartj and yendj determine the periods where the first
and last partition of an order j are planned:

ystartj = min({i ∈ N | xi,j > 0}) ∀j ∈ K

yendj = max({i ∈ N | xi,j > 0}) ∀j ∈ K
– The production volume for each period is stored in auxiliary variables wi:

wi =
∑
j∈K

xi,j ∀i ∈ N

– The production volume for each product type and period is stored in aux-
iliary variables wi,t:

wi,t =
∑
j∈K:
tj=t

xi,j ∀i ∈ N,∀t ∈M

– Auxiliary variables ui,r capture the total usage of secondary resources in
each of the planning periods, where the resource usage of a single order
partition is determined relative to the total order usage.

ui,r ∈ R+
0 =

∑
j∈K

ruj,r ·
xi,j
dj

∀i ∈ N, r ∈ R
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Hard Constraints

In addition to the two production volume hard constraints from the PLP, the
PLP-OSRC defines another two hard constraints that restrict the minimum
partition size and the maximum partition count of each order:

– H3: The minimum partition size is reached for every partition of every
order:

∀i ∈ N, j ∈ K xi,j = 0 ∨ xi,j ≥ psmin
j

– H4: The maximum partition count is not exceeded for any order:

j ∈ K |{i ∈ N | xi,j > 0}| ≤ pcmax
j

Objective Function

The three objectives f1, f2, f3 defined in Section 2.1 are also used in the multi-
objective function of the PLP-OSRC. However, f3 has to be slightly refor-
mulated to be compatible with the novel variable definitions. Furthermore,
two new objectives f4 and f5 influence the quality of solutions to the PLP-
OSRC depending on the earliness/lateness of orders and the over- and under-
utilization of resources.

The following defines objectives f3, f4, f5 for the PLP-OSRC:

– Function f3 counts the number of priority inversions in the assignment
where they are redefined to handle order splits. That is, f3 counts the
number of order-pairs (i, j) for which i has a higher priority than j but i
finishes only after j starts.

f3 =|
{

(i, j) ∈ K2 : pi > pj and yendi > ystartj

}
| (10)

(11)

– The objective function f4 calculates a penalty for every order whose first
partition is planned before the order’s minimum period or whose last par-
tition is planned after the order’s maximum period.

f4 =
∑
j∈K

(
max(pdmin

j − ystartj , 0) + max(yendj − pdmax
j , 0)

)
(12)

(13)

– Objective f5 calculates a penalty for over-usage and under-usage of sec-
ondary resources.

f5 =
∑
r∈R

∑
i∈N


1− ui,r

rumin
r

if ui,r < rumin
r

ui,r

rumax
r
− 1 if ui,r > rumax

r

0 otherwise.

(14)
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Whereas objectives f1, f2, f3 can be normalized as specified in Section 2.1,
objectives f4 and f5 are normalized as follows:

g4 =
1

n · k
· f4 (15)

g5 =
1

n · o
· f5 (16)

(17)

Objective g4 applies normalization through a division by the number of
orders times the number of periods. As the penalty for each order is at most
k, the normalized objective is also guaranteed to be≤ 1. The resource objective
g5 is normalized by the number of periods and resources which normally also
leads to values between 0 and 1, however the upper bound is not strict. When
looking at instances without secondary resources, g5 must not be considered
in the objective function because it would yield a division by zero.

The final objective function for the PLP-OSRC is the following weighted
sum (with user defined weights a1 − a5).

minimize g = a1 · g1 + a2 · g2 + a3 · g3 + a4 · g4 + a5 · g5 (18)

3 Solution Approaches

In the previous section we have provided an in depth problem definition of the
PLP-OSRC. In this section, we first propose an integer programming formu-
lation of the problem in Section 3.1 before we later describe a metaheuristic
local search based solution approach in Section 3.2

3.1 Integer Programming Model

Previously, we proposed an integer programming model for the PLP [11]. In
this section we extend that model for the PLP-OSRC, based on the formal
problem description that we specified in Section 2. We carry over the input
parameters without changes, which is why they are not repeated in this section.
In contrast to the integer programming model for the PLP, th e The former
binary decision variables xij are converted to an integer domain in order to
model the planned production amount for order j in period i and thus account
for order splits. Furthermore, the model for the PLP-OSRC The variables and
detailed formulation are as follows:
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Variables

xij ∈ Z+ for each i ∈ N , j ∈ K stating how much demand of order j is planned in
period i

x̂ij ∈ {0, 1} for each i ∈ N , j ∈ K stating whether a partition exists in period i. A
partition exists for order j in period i iff xij > 0.

ystartj ∈ N for each order j ∈ K the period assignment of its first partition

yendj ∈ N for each order j ∈ K the period assignment of its last partition

zij ∈ {0, 1} for orders i, j ∈ K where pi > pj , existence of a priority inversion between i
and j

s+i ∈ R+ for each i ∈ N the surplus production volume for period i

s−i ∈ R+ for each i ∈ N the missing production volume for period i

s+it ∈ R+ for each i ∈ N , t ∈M the surplus production volume for period i and product
type t

s−it ∈ R+ for each i ∈ N , t ∈M the missing production volume for period i and product
type t

u+
ir ∈ R+ for each i ∈ N , r ∈ R the amount of over-usage of resource r in period i

u−ir ∈ R+ for each i ∈ N , r ∈ R the amount of under-usage of resource r in period i
vstartj ∈ Z+ for each j ∈ K the amount of violation of the earliest period soft constraint

vendj ∈ Z+ for each j ∈ K the amount of violation of the latest period (=̂ due date) soft
constraint
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Formulation

min a1g1 + a2g2 + a3g3 + a4g4 + a5g5 (19)

s.t.
∑
i∈N

xij = dj j ∈ K

(20)

xij ≤ dj · x̂ij j ∈ K
(21)

ystartj ≤ i + (n− 1) · (1− x̂ij) j ∈ K, i ∈ N

(22)

yendj ≥ i · x̂ij j ∈ K, i ∈ N

(23)∑
j∈K

xij + s+i − s−i = d∗ i ∈ N

(24)∑
j∈K|tj=t

xij + s+it − s−it = d∗t i ∈ N, t ∈M

(25)

d∗ + s+i ≤ c i ∈ N
(26)

d∗t + s+it ≤ ct i ∈ N, t ∈M
(27)

xij ≥ psmin
j · x̂ij j ∈ K

(28)∑
i∈N

x̂ij ≤ pcmax
j j ∈ K

(29)

yendi − ystartj ≤ (n− 1)zij i, j ∈ K | pi > pj
(30)

vstartj ≥ pdmin
j − ystartj j ∈ K

(31)

vendj ≥ yendj − pdmax
j j ∈ K

(32)∑
j∈K

ruj,r ·
xij

dj
− u+

ir ≤ rumax
r i ∈ N, r ∈ R

(33)∑
j∈K

ruj,r ·
xij

dj
+ u−ir ≥ rumin

r i ∈ N, r ∈ R

(34)

yendi ≤ ystartj i, j ∈ S, S ⊆ K | pi ≥ pj , di = dj , ti = tj
(35)∑

t∈M
(s−it − s+it) = s−i − s+i i ∈ N

(36)

g1 =
1

n · d∗
·
∑
i∈N

(s+i + s−i ) (37)

g2 =
1

n ·m
·
∑
t∈M

(
1

d∗t
·
∑
i∈N

(s+it + s−it)

)
(38)

g3 =
2

k · (k − 1)
·
∑

i,j∈K
zi,j (39)

g4 =
1

2k
·
∑
j∈K

(
vstartj + vendj

)
(40)

g5 =
1

n · o
·
∑
r∈R

∑
i∈N

(
u−ir

rumin
r

+
u+
ir

rumax
r

)
(41)
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Constraints (20) to (25) link auxiliary variables to the decision variables.
Constraint (20) ensures that the total demand of all partitions of j equals
the order’s demand dj . Constraint (21) links the binary variables x̂ij to the
decision variables xij such that xij > 0→ x̂ij = 1. Constraints (22) and (23)
link the xij to the ystarti and yendi variables so that they always hold the
period assignment of the first and last period of any partition of an order,
respectively. Constraint (24) states for each period that the total planned
production volume plus the surplus minus the slack equals the target d∗. As
both variables have positive domains and they are subject to minimization,
at most one of them will be non-zero in any optimal solution. Constraint (25)
repeats this relationship over the variables s+it and s−it for each product type t.

The block of constraints between (26) and (29) models the problem’s hard
constraints. Constraint (26) ensures that the capacity bound per period is sat-
isfied by enforcing that the sum of target demand d∗ and the surplus variable
s+ does not exceed the threshold. Analogously, Constraint (27) enforces the
capacity limit per period and product type. Constraint (28) enforces the min-
imum partition size and (29) the maximum number of partitions into which
an order may be split.

Constraints (30) to (34) populate penalty variables for the objective func-
tion. Constraint (30) links the ystarti and yendi to the zi,j variables which track
the number of priority inversions. It makes sure that for every pair of orders i, j
where i has a higher priority than j, zij is 1 (representing a priority inversion)
if order i finishes after order j starts. The constraints (31) and (32) force the
variables vstartj and vendj to keep track of the violations of the allowed assign-

ment range. Constraints (33) and (34) force u+ir and u−ir to contain the amount
of over-usage and under-usage of resource r in period i. That is achieved by
comparing with the amount of planned resource usage which is given by the
first summand.

Finally, there are two redundant constraints for strengthening the formu-
lation: Constraint (35) enforces a dominance relation for all pairs of orders
which have the same product type and demand value. The constraint requires
that the higher prioritized order ends not later than the lower prioritized one
starts, which is sensible because otherwise we could swap the two orders to
obtain a better solution. This cuts off parts of the search space where the

optimal solution cannot reside. Constraint (36) links the s
{+,−}
i and s

{+,−}
it

variables together, which also leads to improvements in the average run-time.

The objective function is equivalent to the one presented in Section 2.2
but here it is stated on the variable set of the MIP formulation. In g1, the
sum of the slack and surplus variable (s+i + s−i ) is equivalent to the absolute
difference between planned demand and target demand |d∗ − wi|, because at
least one of s+i and s−i will be 0 in any optimal solution and the other one
holds the absolute difference. The same holds true for the analogous variables
in g2. Similarly, instead of using one variable per period to track the resource
usage, the two separate variables for over-usage and under-usage u+ir and u−ir
are used to compute the cost component g5.
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3.2 Metaheuristic Approach

The IP formulation we proposed in the previous section can be used to solve
instances of the PLP-OSRC to optimality. However, solving realistically sized
instances with a large number of variables may often not be possible for an
IP solver within reasonable run-time and memory limitations. Therefore, we
additionally propose a local search based metaheuristic solution approach to
the PLP-OSRC in this section.

Previously, we have investigated a construction heuristic and a local search
approach using simulated annealing for the PLP in [11] and proposed basic
neighborhood moves that can reposition single orders and swap pairs of orders.

In this section, we extend the two neighborhoods previously proposed for
the PLP and furthermore propose two innovative search neighborhoods for the
PLP-OSRC

3.2.1 Neighborhood Relations

We propose four neighborhood relations when approaching the PLP-OSRC
with local search: The first two are extensions of the search neighborhoods
to the PLP that have been previously proposed in [11]. Basically, instead of
moving and swapping complete orders, the new versions move and swap single
order partitions. The third neighborhood splits and merges order partitions
and is able to exchange demands between partitions of an order. Finally, the
fourth neighborhood shifts all partitions of a single order at once.

In the following, we describe the neighborhood operators in detail:

Move-Partition Neighborhood The move-partition neighborhood of a solution
s consists of all solutions s′ whose only difference to s is that one partition of
some order has been moved to a different period. When splits are disallowed
and thus every order has exactly one partition, this is equivalent to the move-
order neighborhood of the basic PLP version. When generating random moves
for this neighborhood, we uniformly sample the order and the partition as well
as the target period.

Swap-Partitions Neighborhood The swap-partitions neighborhood of a solu-
tion s consists of all solutions s′ whose only difference to s is that two order
partitions of different orders, which are not assigned to the same period in s
appear with swapped period assignments in s′. In random neighborhood gen-
eration, the partitions to be swapped are chosen uniformly at random among
all pairs of partitions of different orders, which are not already assigned to the
same period.

Split Neighborhood The split neighborhood of a solution s consists of all solu-
tions s′ which differ from s only with respect to one order, where the possible
changes are:

274

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume I



Solving the Production Leveling Problem (PLP-RCOS)

– One partition of that order is split into two parts and the new part is
moved to some other period.

– Two partitions of that order are merged.
– The sizes of two partitions of that order are changed such that the total

size of the two partitions together stays the same and both partitions re-
main non-empty. In other words, demands are moved from one partition
to another, which is potentially in a different period.

When sampling split moves randomly, first any single order is chosen randomly.
Then, the move is generated such that the three options described above are
equally likely.

Shift-order neighborhood The shift-order neighborhood of a solution s consists
of all solutions s′ which differ from s only with respect to a single order, whose
partitions all have been shifted i periods to the left or to the right. If a partition
cannot be shifted any more because it is already in the first or last period, it
remains in that period. When sampling random shift-order moves, an order is
chosen uniformly at random and i is chosen from {−1, 1}.

3.2.2 Simulated Annealing

Similar as previously described for the PLP in [11], we use a simulated an-
nealing metaheuristic to approach the PLP-OSRC in this paper. Simulated
annealing was first introduced in [5] and resembles the physical process of
annealing in metallurgy. The basic idea is to iteratively apply randomly gen-
erated neighborhood moves to an initial solution to the problem. Whether a
neighborhood move is accepted, depends on the resulting solution quality and
a temperature parameter which is cooled down over the course of the search
process.

Algorithm 1 shows the detailed simulated annealing procedure:
The acceptance function uses the metropolis criterion [5], where the prob-

ability P (i ⇒ j) to accept a move from solution i to solution j is defined as
follows (f(x) is the objective function):

P (i⇒ j) =

{
1, if f(j) ≤ f(i).

exp
(

f(i)−f(j)
t

)
, otherwise.

(42)

We further use a geometric cool down scheme:

ti = α · ti−1 (43)

The simulated annealing procedure shown in 1 relies on a number of pa-
rameters and an initial solution. We use the construction heuristic that was
previously proposed in [11] to produce an initial solution, and set N1−4 to the
search neighborhoods we proposed in this section. The remaining parameters
have to be carefully selected depending on the computational environment.
We describe the tuning of these parameters in Section 4.
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Algorithm 1: Simulated Annealing
Data: initialSolution, neighborhoods Ni with probabilities pi, tmax, tmin,

iterations per temperature w, timeLimit, iterationLimit
Result: a solution at least as good as initialSolution

1 currentSolution← initialSolution;
2 bestSolution← currentSolution;
3 t← tmax;
4 while t ≥ tmin and ¬ time limit reached and ¬ iteration limit reached do
5 foreach j ∈ 1, . . . , w do
6 N ← choose one of neighborhoods Ni according to probabilities pi;
7 m← select a random move out of N (currentSolution);
8 if Accept(m, t) then
9 currentSolution← Apply(m, currentSolution);

10 if currentSolution is better than bestSolution then
11 bestSolution← currentSolution;
12 end

13 end

14 end
15 t← Cool-Down(t);

16 end
17 return bestSolution;

4 Experimental Evaluation

In this section, we provide a detailed description of our experimental environ-
ment and give an overview of our conducted experiments. We first describe an
instance generator for the PLP-OSRC in 4.1, that we use to generate a large
number of benchmark instances for our experiments. Later in Section 4.2, we
provide the details on how parameters for the simulated annealing algorithm
have been selected. Finally, we describe our computational environment and
discuss the final experimental results in sections 4.3 and 4.4.

4.1 Instance Generation

To generate instances for the PLP-OSRC, we extend the random instance
generator we previously proposed in [11] for the PLP with additional input
parameters regarding partitioning, resources and due dates.

Given a number of orders k, periods n, product types m and resources o,
the heuristic constructs an initial solution with the following steps:

1. Partition the number of orders k into m parts o1 . . . om, one for each prod-
uct type.

2. Randomly choose the maximum priority of all orders pmax ∈ {1, . . . , 10}
3. For each product t ∈ M , create a set of demands Dt and randomly select

the size of the set between 1 to 50. Then, insert the corresponding number
of items into the set, where each item is a randomly selected value d ∈
{1, . . . , random(1000−5000)} (the upper bound is a random value between
1000–5000 which is recalculated for each product type).
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4. To determine resource usages for each product type, first randomly select
a probability between 0.0 and 1.0. Then, based on this probability decide
for each resource whether or not it is used for the product type. If it turns
out a resource is used for the product type, randomly select a usage value
between 0.0 and 1.0. This usage value then determines the resource usage
per unit of demand for the particular product type.

5. For each product t ∈M , generate ot orders, where each order is generated
as follows:
(a) Randomly choose the demand dj from the set Dt.
(b) Randomly choose the priority from {1, . . . , pmax}.
(c) The usage of each resource is calculated by multiplying the order de-

mand dj with the previously chosen usage factor. The resulting value
is rounded up.

(d) Randomly choose the earliest start pdmin
j from {1, . . . , b3/4 · nc}.

(e) Randomly choose the latest end pdmax
j from {pdmin

j + 1, . . . , n}.
(f) Randomly choose the maximum partition count pcmax

j from {1, . . . , 10}.
(g) Randomly choose the minimum partition size psmin

j from {1, . . . , d1/2 ·
dje}2

6. In order to set the capacity limit c, we first calculate the target demand d∗

as
∑

j∈K
dj/n. The capacity limit c is then derived from the d∗ by multiply-

ing with a random value from the normal distribution σ(1.1, 0.02). Hence,
c is in the expected case 10% larger than d∗. The capacity limits ct for
t ∈M are chosen analogously.

7. The minimum and maximum resource usages per period are calculated
similarly: First, for each resource r, the average usage per period ūr is cal-
culated. Then, the maximum deviation percentage dmax is drawn from the
normal distribution σ(0.1, 0.02), i.e. 10% on average. Finally, the minimum
resource usage rumin

r is set to (1 − dmax) · ūr and the maximum resource
usage rumax

r is set to (1 + dmax) · ūr.

Using the instance generation procedure, we generated a total of 986 re-
alistically sized large instances for our experiments. The following parameters
were sampled uniformly at random: The number of orders k is chosen from
100 . . . 4000, the number of periods n from 2 . . . 80, the number of products m
from 1 . . . 20 and the number of resources o from 1 . . . 5.

Additionally, we generated another set of 20 smaller instances, using the
following random parameters: The number of orders k is chosen from 10 . . . 100,
the number of periods n from 5 . . . 10, the number of products m from 1 . . . 3
and the number of resources o from 0 . . . 3.

2 Note that an order can only be split in two parts if the demand is at least twice as large
as the minimum partition size. Therefore, psmin

j is chosen so that splitting is possible.
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4.2 Parameter Tuning

As previously mentioned in Section 3.2, the simulated annealing algorithm
we use in this paper depends on a number of parameters whose setting has
an influence on the algorithm’s efficiency and effectiveness. We configure the
parameters for our experiments using SMAC, an automatic algorithm con-
figuration tool that relies on Bayesian Optimization in combination with an
aggressive racing mechanism in order to efficiently search through parameter
configuration spaces [6].

We applied SMAC in parallel mode using 24 cores and a total time limit of
96 hours on the large set including 986 instances. For each problem instance,
we specified a time limit of five minutes per run and no iteration limit. The
cooling rate was not tuned but set to a value of 0.95, which however does
not restrict the parameterization of the simulated annealing procedure as the
number of iterations per temperature is still being tuned.

We tuned the initial temperature tmax, the minimum temperature tmin,
the number of iterations per temperature w and a weight for each of the four
neighborhood relations (p1−4) which determines how often it is selected for
the next move. The detailed configuration space with minimum and maximum
values as well as the defaults and the tuning result is shown in Table 1.

Table 1: Configuration space of Simulated Annealing for parameter tuning

Parameter Type Minimum Maximum Default Tuned

Initial Temperature real 0.01 10.0 1 6.2
Minimum Temperature real 10−9 10−3 10−6 7.6 · 10−4

Iterations Per
Temperature integer 103 106 103 1.54788 · 105

Move Partition
Neighborhood Weight integer 0 10 1 0
Swap Partitions
Neighborhood Weight integer 0 10 1 7
Split Order
Neighborhood Weight integer 0 10 1 3
Shift Order
Neighborhood Weight integer 0 10 1 0

Cooling Rate real (fixed) 0.95 0.95 0.95 0.95

Note that the automatically tuned parameters set the weights for the move
partition and shift order neighborhoods to 0, which disables these two neigh-
borhood operators. We therefore evaluated in addition to the automatically
tuned algorithm parameters (C1) also two manually selected parameters con-
figuration that include all neighborhood operators. One that we selected based
on manual tuning with a number of conducted benchmarks (C2) and another
one that uses an equal weight for all four neighborhood operators (C3). Table 2
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shows the details about the three parameter configurations evaluated in our
experiments.

Table 2: Overview of the algorithm parameter configurations used for experi-
mental evaluation

Parameter C1: auto tuned C2: manually tuned C3: equal weights

Initial temperature 6.2 0.01 0.1
Minimum temperature 0.00076 10−9 10−9

Iterations
per temperature 154788 300000 300000
Move Partition weight 0 4 2.5
Swap Partitions weight 7 2 2.5
Split Order weight 3 3 2.5
Shift Order weight 0 1 2.5

Cooling Rate real (fixed) 0.95 0.95

4.3 Computational Environment

We conducted all experiments for this paper (including parameter tuning) on
a computing cluster with 10 identical nodes, each having 24 cores, an Intel(R)
Xeon(R) CPU E5–2650 v4 @ 2.20GHz and 252 GB of memory, running Ubuntu
16.04.1 LTS. Experiments with the proposed MIP model have been conducted
using Gurobi 8.1.

4.4 Computational Results

In a first series of experiments we evaluated the performance of all investigated
methods on the instance set which contains 20 small randomly generated in-
stances. To give the MIP approach sufficient time to prove optimal solutions,
we set the time limit for all experiments to 1 hour. The simulated annealing
algorithm was run under the same time limit with each of the three parameter
configurations (C1, C2, C3) on the instances. We performed 10 repeated runs
with every configuration on each instance, and used the median objective value
from the 10 runs to compare the final results between the different methods.

Table 3 gives an overview of the experimental results with the small in-
stance set. The first row of the table shows the number of instances where
the evaluated methods could produce feasible solutions within the time limit,
whereas the second row counts the number of overall best upper bounds
achieved by each method. Finally, the third row displays the number of opti-
mal solutions found. We can see that all methods were able to produce feasible
solutions for every instance. The exact approach using the Gurobi solver pro-
duced the best results for the majority of the instances, followed by simulated
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annealing with the manually tuned and automatically tuned parameter config-
urations. Gurobi was able to prove optimal solutions for four of the instances,
while simulated annealing was able to reach one optimal solution.

Gurobi SA C1 SA C2 SA C3

# solved 20 20 20 20
# best 13 3 4 0
# optimal 4 0 1 1

Table 3: Summarized results for the experiments with the set of smaller in-
stances. The rows of the table display, from top to bottom, the number of
feasible solutions found, the number of best upper bounds produced, and the
number of optimal solutions achieved by each method.

Detailed results for experiments with the small instances are visualized
in Figure 4. In addition to the achieved results by Gurobi and the simulated
annealing approach the figure also displays the best lower bounds found by the
mixed integer programming approach. All objective values are shown relative
to the overall best found objective value, and therefore costs of 1 denote the
overall best found solution costs (results with a lower bound value of 1 denote
proven optimal solutions).
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Fig. 4: A visualization of the experimental results for the 20 small instances.
The horizontal axis represents the 20 evaluated instances, whereas the vertical
axis measures the achieved relative objective values (solution cost produced
by each method divided by the overall best found solution cost).

We can see that for the majority of the instances, the exact approach
produces the best results. The simulated annealing approach produces similar
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outcomes with all three evaluated parameter configurations, however the best
results are produced with the manually tuned parameter configuration for the
set of smaller instances in a few cases. Compared to the exact method, the
simulated annealing algorithm can provide a similar solution quality on the
majority of the instances, except for instances 5, 7, 8, 13, and 15, where Gurobi
is able to produce the best results.

Figure 5 further visualizes the summarized results as box plots. We can
see that Gurobi produces the overall best results for the set of small instances.
All three parameter configurations for simulated annealing give similar results,
with configurations C2 and C3 producing slightly better results than configu-
ration C1.

Fig. 5: Box plots comparing the overall results achieved on the set of small
instances. The vertical axis measures the achieved relative objective values
(solution cost produced by each method divided by the overall best found
solution cost).

In a second series of experiments we evaluated the performance of the
proposed methods on the instance set which contains 986 large randomly gen-
erated instances. Similar as with the first series of experiments we conducted
10 repeated runs for each simulated annealing parameter configuration per
instance and used the median objective value to compare the results between
the evaluated methods. We used a five minute time limit for the set of larger
instances.

The results for the experiments with the set of large instances are sum-
marized in Table 4. Similar as in Table 3, the first row of the table shows the
number of instances where a feasible solution could be found, the second row
counts the number of best upper bounds found by each method, and the third
row displays the number of proven optimal solutions.
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Gurobi SA C1 SA C2 SA C3

# solved 30 927 936 939
# best 3 758 95 95
# optimal 0 0 0 0

Table 4: Summarized results for the experiments with the set of larger in-
stances. The rows of the table display, from top to bottom, the number of
feasible solutions found, the number of best upper bounds produced, and the
number of optimal solutions achieved by each method.

The results show that no approach is able to produce feasible solutions for
all 986 instances within the time limit3. The exact method using Gurobi could
only obtain 30 feasible solutions and three best upper bounds, whereas the
simulated annealing approach is able to solve the large majority of instances
in our experiments. We can see that simulated annealing with parameter con-
figurations C2 and C3 was able to obtain slightly larger number of feasible
solutions as C1. However, most best solutions was produced using parameter
configuration C1. No optimality proofs could be achieved within the given
time limits.

Figure 6 visually compares the produced solution qualities achieved by sim-
ulated annealing with parameter configurations C1, C2 and C3 for the instances
that could be solved by all three configurations. One can see that overall that
the automatically tuned algorithm configuration C1 overall produces the best
results in our experiments whereas configurations C2 and C3 produce solutions
of similar quality.

In summary, our experiments show that the exact approach obtains the
best results for most of the small instances. However, in experiments with the
larger instances the integer programming solver turned out to be not com-
petitive compared to the simulated annealing approach. Overall, the three
evaluated parameter configurations for simulated annealing produced a very
similar number of feasible solutions, but the automatically tuned configura-
tion that only uses the swap and split neighborhood operators produced the
best results for the majority of the larger instances. However, we observe that
configurations which make use of all four investigated neighborhood opera-
tors produced slightly better results on the set of smaller instances in our
experiments.

5 Conclusion

In this paper we have investigated an extended problem formulation of the
PLP that allows production orders to be split during the planning process
and additionally considers the resource constraints. We provided a detailed
formal specification of the extended production leveling problem and further

3 There is no guarantee, though, that every instance actually has a feasible solution.
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Fig. 6: Box plots comparing the overall results achieved with the simulated
annealing approach on the set of larger instances. The vertical axis measures
the achieved relative objective values (solution cost produced by each method
divided by the overall best found solution cost). Note that some outliers have
been excluded for an improved visual comparison.

proposed a mixed integer programming formulation that can be used to ap-
proach the problem with state-of-the-art solver technology. Additionally, we
described a metaheuristic approach using simulated annealing that can be
used to tackle realistically sized problem instances and investigated several
local search neighborhood relations for the problem.

We empirically evaluated all proposed methods by performing experiments
using a large number of instances that have been randomly generated by an
instance generation routine that we proposed in this paper. Experimental re-
sults show that the exact approach using integer programming formulation
was able to prove optimal results on several of the considered smaller in-
stances and overall produced the best results for the experiments with small
sized instances. However, results obtained by experiments with larger problem
instances revealed that the exact approach was not competitive compared to
the evaluated metaheuristics on realistically sized instances in our experiments.
The simulated annealing based approach finds feasible solutions for most of
the instances within a reasonable time limit and can be used to solve instances
of realistic size. Based on the configuration provided by the automated param-
eter tuner SMAC, we can conclude that the most important neighborhoods
are the swap partitions and split moves.

In future work, we plan to investigate an approach that hybridizes the
proposed exact and metaheuristic techniques within the framework of large
neighborhood search.
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