
Iterated Local Search for the examination timetabling 

problem with constructive-based initial solution*  

Synim Selimi1, Labeat Arbneshi1, Kadri Sylejmani1☒, and Nysret Musliu2 

1 Faculty of Electrical and Computer Engineering, University of Prishtina, Kosova 
2 Databases and Artificial Intelligence Group, TU Wien, Austria 

synim.selimi@student.uni-pr.edu, 

[labeat.arbneshi,kadri.sylejmani]@uni-pr.edu, 
musliu@dbai.tuwien.ac.at 

Abstract. In this extended abstract we present an approach and solution for the 

examination timetabling problem based on the Iterated Local Search 

metaheuristic. Initially we introduce a flat data remodeling of the given problem 

instances. The proposed constructive approach then uses precalculated heuristic 

information to construct a feasible initial solution from the refined instance data. 

The neighborhood structure consists of two operators, one to reallocate only 

rooms and the other to change room-period tuples for course examination events. 

The algorithm also applies a perturbation mechanism, which is tuned to guide the 

search for optimal solutions out of the local optima. The presented approach has 

been preliminarily tested against some smaller test sets existing in the literature, 

where it has shown that it is able to produce optimal results for some of the 

instances. 
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1 Introduction and problem formulation 

The examination timetabling process at universities is an overly complex combinatorial 

problem that has been extensively researched, resulting in a substantial body of 

literature. Qu et al. [1] present a survey of the algorithmic methodologies and the 

respective variants of the problem formulation. Many of the algorithms in literature 

solve the variant of the examination timetabling problem that was introduced in the 

International Timetabling Competition in 2007 (ITC2007), which is described 

thoroughly by McCollum et al. [2]. ITC2007 is mainly inspired by the model of British 

universities for examination timetabling, and it introduces 12 test instances (tagged as 

ITC2007 dataset) which are quite challenging. To date, none of the instances have been 

solved to optimality. In this paper, we tackle a recent reformulation of the problem by 

* The work on this paper was supported by the HERAS+ program within the project entitled

“Automated Examination Timetabling in the Faculty of Electrical and Computer Engineering

- University of Prishtina”.
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Battistutta et al. [3], which is based on the practicalities of the examination timetabling 

process at Italian universities. 

The original formulation of a real-world examination timetabling problem carried 

out by Battistutta et al. [3] is the variant that we take on in this paper. In the following 

section we outline the essential problem entities and constraints, but we refer the reader 

to Battistutta et al. [3] for more in-depth details on the problem formulation. 

The problem defines the following entities: 

Courses, Exams and Events – Each course requires scheduling one or more exams 

within an examination term. In addition, each exam can be organized multiple times 

and can consist of one or two parts, depending on whether it has a written part, an oral 

part or both. Two-part exams must be scheduled sequentially. 

Rooms - The respective exam events might require rooms of specified size. Rooms are 

classified into three size categories: small, medium, and large. Room combinations are 

annotated as room sets and are predefined as fixed sets in the problem instances. 

Days, Timeslots, Periods - The number of available periods is the total number of time 

slots per day multiplied by the number of days in a term. For example, in a two-week 

time span (i.e., examination term) there are 20 available periods given two time slots 

per day (e.g., 09:00 and 14:00) during working days. 

Curricula – Contains the courses with the same students (e.g., courses of a given study 

program). There are two categories of curricula, namely Primary and Secondary. The 

first holds the set of courses in the current semester, while the latter has the set of 

courses in previous semesters. The level of conflicts between assignments of events 

belonging to Primary and Secondary set is outlined below. 

The hard constraints are: 

Room request - For each exam event (written or oral) there is a specific number and 

type of the room/s that must be assigned. Also, if any oral exam requires a room, then 

a single room of any type must be assigned. 

Room occupation - During each period, a given room cannot be assigned to more than 

one exam event. 

Hard conflicts - Two events (written or oral) cannot be assigned to the same period, if 

they: (1) are primary courses in the same curricula (i.e., same semester), (2) have the 

same teacher, or (3) have an explicitly written down constraint forbidding them to be 

assigned in the same period. 

Precedence – Requires that two events of the same course are strictly scheduled one 

after the other when: (1) events are part of two separate exams of the same course and 

(2) events are part of the same two-part exam (written and oral).

Unavailability - An exam event or room might be explicitly declared not to be

scheduled in some specific periods.

The soft constraints are: 

Soft conflicts - Two events that are assigned to the same period are in soft conflict if 

they: (1) belong to the same set of courses either in a primary-secondary or secondary-

secondary relationship and (2) have an explicitly declared undesirable constraint not to 

be scheduled at the same time. 
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Preferences - There is a set of constraints explicitly declaring that specific 

combinations of events and periods or rooms and periods are undesired or preferred. 

Distances - For some pairs of events there are constraints requiring certain minimum 

and/or maximum distances between their respective assigned periods, such as: (1) 

distinct parts of the same exam have a minimum and a maximum distance, declared 

explicitly for each course, (2) different exams of the same course must be separated for 

a minimum number of periods, (3) if two courses are part of the same curriculum, there 

should be a minimum separation between the first event of the respective exams, and 

(4) there could be explicit constraints requiring certain distances between specific

events.

Note that the weights of the violation for distinct types of soft conflicts are left to 

be specified by the end user. 

2 Solution approach 

2.1 Preprocessing, search space and cost function 

In the preprocessing phase we do a complete flat data remodeling of the given instances 

to ensure that all relevant data is reduced and contained within its corresponding course 

instance. This is accomplished by moving and restructuring information about courses 

and constraints from scattered entities into a self-contained course event entity with 

information about allowed rooms/periods, number of events, event dependencies, etc. 

This step makes the use of constructive heuristics and constraint propagation techniques 

much easier as described in Section 2.2 (Initial solution). 

A state in the search space is represented by two vectors, where, for each exam 

event, the first one stores the rooms and the second one stores the assigned period. An 

exam can only be placed in a certain room and period if it satisfies all hard constraints 

that are related to periods, rooms, curricula, and teachers. 

The cost (fitness) function is the weighted sum of all penalties that occur when a 

room-period assignment does not fulfill the associated soft constraints. 

Algorithm 1 Construction of the initial solution 

1: procedure Solve(instance) 

2: solution <- {} 

3: cInstance <- InstanceLevelHeuristic(instance) // Algorithm 2 

4: for course in cInstance.courses 

5: cCourse <- CourseLevelHeuristic(course) // Algorithm 3 

6: solution[course] <- AssignRoomPeriod(cCourse) 

7: cInstance <- PropagateConstraints(cInstance) 

8: return solution 
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2.2 Initial solution 

Following the preprocessing phase, our approach ensures that we can consistently 

generate an initial solution for all instances in reasonable time by using multiple 

instance-level and course-level constructive heuristics. These heuristics guide the 

assignment of courses, periods and rooms based on situational information, for e.g., the 

number of exams per course, the type of exams (written, oral), the course event 

complexity (composite rooms, combination of multiple two-part exams), etc. While the 

approach proposed by Battistutta et al. [3] looks through a search space with infeasible 

states, our approach always starts with and explores within the feasible region of the 

search space. 

Algorithm 1 displays the general approach to generating an initial solution. Allowed 

room-period tuples per course are defined during preprocessing and then updated from 

PropagateConstraints after each allocation. AssignRoomPeriod selects the first 

allowed room-period tuple for a given course event. Algorithm 2 illustrates the use of 

constructive heuristics to guide the generation of the initial solution. 

The heuristic mechanisms described below guide the order of course assignments 

and the order of period-room allocations to always satisfy hard constraints promptly 

with little to no backtracking. 

DistributeExamPeriods(possiblePeriods) – distributes and reorders assignable 

periods for course events with a calibrated distance between event exams. 

Algorithm 2 Applying heuristic information at the instance level 

1: procedure InstanceLevelHeuristic(instance) 

2: inst <- Copy(instance) 

3: if instance has more courses with multiple exams 

4: inst.courses <- GroupAndAssignByExamNumber(inst.courses) 

5: else if instance has more courses with multiple parts 

6: inst.courses <- GroupAndAssignByParts(inst.courses) 

7: else if instance has more flat courses 

8: inst.courses <- ReorderComplexCoursesFirst(inst.courses) 

9: return inst 

Algorithm 3 Applying heuristic information at the course level 

1: procedure CourseLevelHeuristic(course) 

2: c= Copy(course) 

3: if course required simple rooms 

4: c.possibleRooms <- Shuffle(c.possibleRooms)

5: if course has multiple exams 

6: c.possiblePeriods <-

DistributeExamPeriods(c.possiblePeriods) 

7: else if course has multiple parts 

8: c.possiblePeriods <-

DistributePartPeriods(c.possiblePeriods) 

9: return c 
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DistributePartPeriods(possiblePeriods) – distributes and reorders assignable 

periods for two-part course events with a calibrated distance between event parts. 

GroupAndAssignByExamNumber(courses) – groups and reorders by exam 

number, whereafter preceding exams will be assigned before subsequent exams by 

default. 

GroupAndAssignByParts(courses) – groups and reorders courses by their 

respective parts (Written or Oral), whereafter Written exams will be always assigned 

before Oral exams. 

ReorderComplexCoursesFirst(courses) – groups and reorders courses by their 

complexity first, where complexity is defined as the number of events attached to a 

course due having multiple exams, multiple parts, or both. 

Algorithm 4 Iterated Local Search 

procedure SolveWithILS (instance, maxIterations, 

hillClimbingIterations, operatorRate, changeRate, changeHomeRate, 

perturbRate)  

current <- Solve(instance) // Algorithm 1 

best <- home <- current 

for n from 1 to maxIterations 

p <- random (0,1) 

for h from 1 to hillClimbingIterations 

if p < operatorRate 

neighbor <- ChangeRoom(current) 

else 

numCourses <- changeRate * instance.totalCourses 

for c from 1 to numCourses 

  neighbor <- ChangeRoomPeriod(current) 

if neighbor better than current 

current <- neighbor 

if current better than best 

best <- current 

h <- random (0,1) 

if h < changeHomeRate or current better than home 

home <- current 

numCourses <- perturbRate * instance.totalCourses 

for i from 1 to numCourses 

current <- ChangeRoomPeriod(home) 

return best 
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2.3 Neighborhood structure 

Battistutta et al. [3] define the MoveEvent operator, which changes the period-room 

tuple of an event (i.e., a part of an exam). In our case, the neighborhood structure is a 

variation of MoveEvent, which consists of two operators, namely ChangeRoom and 

ChangeRoomPeriod, as described below. 

ChangeRoom – randomly selects a given exam (including all its events) and moves 

all corresponding events from their existing room to a new room, provided that all hard 

constraints are satisfied. 

ChangeRoomPeriod – extends the ChangeRoom operator with the ability to move 

exam events from a given room and period to another randomly selected available room 

and period. 

2.4 Iterated Local Search 

In Algorithm 4, we present the pseudocode of the proposed approach that is based on 

the Iterated Local Search (ILS) metaheuristic. The initial solution is constructed by 

using constructive heuristics and constraint propagation as discussed in Section 2.2. 

This ILS-based procedure runs a form of hill climbing iteratively and explores the 

search space using the neighborhood structure described above. Within the iterative 

phase of ILS, we distinguish between three main steps, as follows. 

The exploitation phase runs a hill climbing algorithm, which exploits the search 

space using our neighborhood structure guided by the parameter operatorRate. This 

parameter defines the selection of one of the existing neighborhood operators. 

The selection phase selects the new home depending on the parameter 

changeHomeRate, which determines whether the algorithm has more of an explorative 

nature (where the current solution is accepted as the new home base, regardless of 

quality) or exploitative nature (where the current solution becomes the new home base 

only if its quality is better than the quality of current home base). 

The perturbation mechanism, which, based on the parameter perturbRate, 

applies the operator ChangeRoomPeriod multiple times to perturb the home solution 

and consequently avoid the local optima. 

3 Computation results 

3.1 Data set and parameter tuning 

The formulation of the examination timetabling problem from Battistutta et al [3] that 

we have tackled in this paper has a dataset of 40 instances that is divided into 7 groups. 

Each group presents timetabling requirements from different study department at 

selected Italian universities. For our preliminary computational study, we have used the 

revised version of the dataset [3] and have only selected two of the smaller groups in 

the dataset (namely group D2 and group D3) that have at most 89 exams, 188 periods 

and 15 rooms. The experiments have been conducted using an Apple M1 machine with 

16 GB of memory. 
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3.2 Comparison results 

During experimentation sampled from 100 attempts we managed to generate initial 

feasible solutions for all instances in 0.3537s on average, with 0.01s being the shortest 

and 2.58s the longest duration. 

The preliminary computational experiments were conducted by running the 

algorithm 10 times for 30 seconds for each of the instances belonging to the test subsets, 

namely D2 and D3. All results and generated solutions have been validated with the 

solution validator (named examtt toolbox) provided by Battistutta et al [3]. Table 1 

displays the preliminary results, which show promising indications that the algorithm 

can generate comparable and satisfactory solutions. For the D2 subset, our approach 

falls behind the approach of Battistutta et. al [3], while for the D3 subset, our approach 

finds the optimal solutions for 6 instances and is outperformed on the remaining 3 

instances.  

We cannot draw a direct comparison of the computation time against the approach 

of Battistutta et. al [3], due to different computing environments, however as shown in 

Table 1, the approach of Battistutta et. al [3] on average solves the D2 subsets for about 

93 seconds and the D3 subsets on average for about 27 seconds. 

4 Conclusion and future work 

This paper presents an ongoing work about the design and implementation of an 

Iterated Local Search metaheuristic that can find optimal solutions for a subset of 

instances existing in the literature. We believe this approach is worth exploring further 

because of promising preliminary results and the ability to produce feasible solutions 

quickly, albeit not notably better than the existing ones for all instances in the test set. 

Table 1. Comparison of the proposed approach against state-of-the-art methods. 

Instance name 
Simulated Annealing (SA) ILS algorithm 

Avg Best Time Avg Best ILS vs. SA (%) 

D2-1-18 427.77 426 94.7 630 570 25.26 

D2-2-18 22.00 22 88.7 151 140 84.29 

D2-3-18 22.00 22 95.0 169 97 77.32 

D3-1-16 0.00 0 61.9 201 169 100 

D3-1-17 0.00 0 83.5 472.5 401 100 

D3-1-18 0.00 0 83.9 460 375 100 

D3-2-16 0.00 0 0.8 1.7 0 0 

D3-2-17 0.00 0 3.1 2.9 0 0 

D3-2-18 0.00 0 3.5 0 0 0 

D3-3-16 0.00 0 1.0 0 0 0 

D3-3-17 0.00 0 2.3 3.1 0 0 

D3-3-18 0.00 0 2.2 0 0 0 
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As part of future work, along with the development of new neighborhood operators, we 

aim to upgrade the existing operators with heuristic features that choose exam 

reallocations based on partial solution penalties and restrict the selection of periods and 

rooms to only those promising improvements. We will also explore applying our flat 

entity approach to address the practical challenges with MiniZinc modeling mentioned 

by Battistutta et. al [3]. Lastly, in addition to improving experimental benchmarking, 

we intend to modify our heuristics approach to also explore the infeasible part of the 

search space. 
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