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Abstract. Examination timetabling is a problem well known to the
scheduling community. Its simplest version, which is the Uncapacitated
Examination Timetabling Problem is easily described and comprehended.
Nevertheless, proof of optimality is notoriously di�cult even for moder-
ate size problems. In this paper we describe the e�ort that our team ex-
ercised in �nally proving the optimality of the sta83 instance of Carter's
dataset. The problem was decomposed naturally in three parts and for
each part a di�erent approach managed to prove optimality of the cur-
rently best known solution. Several hours of computation were needed,
but now we are con�dent that no solution exists with cost less than the
proved optimal value. This work also presents optimal solutions to sub-
problems that exist in various public datasets problems and two best
known solutions of such problems.

Keywords: Examination Timetabling · Mixed Integer Programming ·

Heuristics

1 Introduction

Timetabling problems arise in several domains including health-care, education,
call centers, airlines and others. Rostering and scheduling are also commonly
used terms to describe timetabling problems. In this paper we study the Un-
capacitated Examination Timetabling Problem (UETP). UETP is the problem
of scheduling university examinations to periods (time-slots) in such a way that
no student should be examined at the same period for more than one course.
Furthermore, the schedule of each student should allow enough time for study-
ing between successive examinations. The problem is uncapacitated in the sense
that no room capacities or availabilities are considered.

Our contribution to UETP is twofold. Firstly, we present a way of decom-
posing and reducing the sizes of the problems that results in obtaining two new
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best known solutions for benchmark instances. Secondly, and most noteworthy
we propose a novel way of approaching a certain known instance of the Carter's
dataset [6] of the UETP that results in actually proving the optimal value of the
instance.

An outline of the paper follows. Section 2 provides a succinct description of
the problem. Section 3 presents a glimpse of the broad bibliography for university
examination problems capacitated or not. The next section describes our e�orts
to cleanse and decompose the problem instances so as to reduce their sizes,
in an e�ort to feed various solution approaches with easier to digest problems.
Section 5 is devoted to attacking the UETP problem instances with three speci�c
methods that are later used in Section 6 to prove optimality for problem instance
sta83 of the well known Carter's dataset. Next, our conclusions follow.

2 Problem Description

Each UETP instance contains information about the set of examinations that
each student is enrolled in. Each instance has a speci�c number of periods that
can be used to schedule the examinations to. The single hard constraint is that
no student is allowed to participate in more than one examination per period. To
allow time for each student to study between his examinations, for each student
s, for each pair of examinations taken by s, a penalty of 16 is imposed if the
two examinations occur in adjacent time slots (called distance 1), penalty 8 is
imposed for distance 2, 4 for distance 3, 2 for distance 4, and 1 for distance 5.

The natural way to represent an instance is as an undirected weighted graph
G = (V,E) where each vertex in V is an examination and each edge in E connects
two examinations with common students. The weight of each edge is the number
of common students for the examinations it connects.

3 Related work

The �eld of educational timetabling is very active. Several papers are typi-
cally published every year regarding course timetabling (post-enrollment and
curriculum-based), examination timetabling, high school timetabling, thesis de-
fense timetabling and others. Several surveys regarding the �eld have been pub-
lished and present the challenges that such problems pose [12], [9]. The survey
by Qu et al. [10] focuses on examination timetabling that is the subject of our
work too. Recent surveys by Tan et al. [13] and Ceschia et al. [7] demonstrate the
strong interest of the timetabling community for educational timetabling prob-
lems. Maybe this can be justi�ed by the familiarity of such problems to academia
circles. In [7] focus is given on �standard� formulations and benchmark instances
that are also used in our work are presented. Another recent work for real world
examination timetabling problems, this time, is the paper from Battistutta et
al. [3].
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Our team is also active in educational timetabling. In [8] we proposed a
novel way of estimating lower bounds for UETP instances. Ideas about symme-
try elimination, problem decomposition and cleansing of the instances were also
presented there. The current paper serves as a follow-up and provides experi-
mental results based on those ideas.

4 Preprocessing

Before solving each problem we perform a cleansing process through which we
remove problem components that are insigni�cant and only add noise to the
problem. The premise is that by solving the cleansed problem, we will still be
able to �nd optimal solutions that will be optimal for the original problem. Fur-
thermore, we identify independent subproblems that exist in each problem. Such
subproblems can be solved independently and the solution to the original prob-
lem can be stitched by using the solutions of the subproblems. An exploration
of the main ideas that we use for cleansing and decomposing the problems are
more extensively described in our latest paper [8]. A synopsis follows.

Initially, we remove obvious noise students and examinations [2] (see lines 1
and 2 of Algorithm 1). Then, we identify subgraphs of the graph that can be
handled independently. Note that the size of a subgraph refers to the number
of its nodes which is equal to the number of the corresponding subproblem's
exams. Subgraphs of size lower than ⌊P−1

6 ⌋+ 1 are identi�ed as noise. This can
be justi�ed by the fact that we can spread the examinations of such subgraphs to
the P available periods with zero penalty. Examinations with degree lower than
P
11 are also noise since they can be always positioned with zero penalty. Then,
any student that has a single non-noise examination and an arbitrary amount of
noise examinations is also considered as noise. The process repeats until no more
examinations or students can be marked as noise. A description of the procedure
is given in Algorithm 1.

Another form of preprocessing involves the identi�cation of interchangeable
examinations that was proposed in [8]. These examinations have the same neigh-
borhoods, as de�ned in graph G, and the same number of common students for
each neighbor. As these examinations are practically the same we can enforce
them to either be in the same period if they are not in con�ict or to follow a spe-
ci�c sequence of appearance in the �nal schedule if they have common students.
By eliminating this type of symmetry of the problem, MIP/CP solvers are able
to better explore the solution space.

4.1 Datasets

The standard benchmark dataset for UETP is Carter's dataset (a.k.a. Toronto
dataset). Those instances were contributed in [6] back in 1996 and since then
were used in many papers. Recently, 19 new instances that are modi�ed ver-
sions of other more complex formulations, were added by Bellio et al. [4]. All
of them are publicly available in https://opthub.uniud.it/ which is a site that
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Algorithm 1: Remove noise examinations and students from an exam-
ination timetabling problem

Input: An examination timetabling problem represented as a graph G
Output: Graph G with noise examinations and noise students removed

1 Find students enrolled in a single exam, tag them as noise
2 Find examinations with only noise students, tag them as noise
3 Remove tagged examinations and students from G
4 do // loops until no more noise examinations are found

5 done = True
6 Let S be the set of disconnected components (subgraphs) of G
7 while S ̸= ∅ do
8 Gi = next(S) // i is the identifier of the subgraph

9 if |Gi| < ⌊P−1
6

⌋+ 1 then
10 Tag all examinations of Gi as noise
11 Tag all students enrolled in examinations of Gi as noise
12 Remove tagged examinations and students from Gi and G
13 done = False

14 do

15 more_noise = False
16 for each examination e in Gi do

17 if dege < P
11

then

18 Tag e as a noise
19 Tag all students enrolled in e as noise
20 Remove tagged examinations and students from Gi and G
21 more_noise = True
22 done = False

23 while more_noise
24 Remove Gi from S

25 while not done

hosts de�nitions, datasets and solutions of several timetabling problems that
have attracted the interest of the timetabling community.

The characteristics of the instances used in this paper are shown in Table 1.
Con�ict density is a metric that is computed by dividing the number of edges
of the problem's corresponding graph by n(n − 1)/2, where n is the number
of vertices. Values for noise students and examinations are computed based on
Algorithm 1. Moreover, the table presents the best known values that were ob-
tained by solutions that we have downloaded from https://opthub.uniud.it/ in
April 2022. Costs assume integer values and since the problem is of minimization
nature, lower values are favored. Normalized costs are shown in the rightmost
column of the table and are computed by dividing each integer cost by the cor-
responding number of students. The star symbol (∗) in best known cost (95947)
of instance sta83 indicates that this cost is optimal. At Section 6 we show that
this is indeed the case. We consider it as the highlight of our work, since it is the
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�rst instance among the Carter's dataset for which it is proven that an optimal
solution has been reached. It should be noted that the table has symbol † for
the best known costs of two instances, ITC2007_9 and ITC2007_10. These best
known values were contributed by our team and were obtained by exploiting the
concept of noise examinations and students and the decomposition of problems
to subproblems that enabled us to use optimal solutions to independent sub-
problems and search for good solutions using the Variable Neighborhood Search
approach described in [2].

Table 1. Instances - descriptive statistics - noise examinations and noise students -
best known costs

Instance id Exams Students Periods Con�ict density Noise exams Noise students Best known cost Best known normalized cost
car92 543 18419 32 0.137986 10 3969 67084 3.6421
car91 682 16925 35 0.128386 13 3409 71727 4.2379
ear83 190 1125 24 0.266945 0 1 36473 32.4204
hec92 81 2823 18 0.420679 0 321 28325 10.0337
kfu93 461 5349 20 0.055579 33 276 68462 12.7990
lse91 381 2726 18 0.062592 3 99 26643 9.7737
pur93 2419 30029 42 0.029495 83 2627 120144 4.0009
rye93 486 11483 23 0.075279 1 2025 89999 7.8376
sta83 139 611 13 0.143989 0 0 ∗95947 ∗157.0327
tre92 261 4360 23 0.180696 3 667 33094 7.5904
uta92 622 21266 35 0.125557 5 6180 62675 2.9472
ute92 184 2749 10 0.084937 0 78 68090 24.7690
yor83 181 941 21 0.288889 0 1 32375 34.4049
ITC2007_1 607 7883 54 0.050495 25 227 5628 0.7139
ITC2007_2 870 12484 40 0.011695 238 2430 1538 0.1232
ITC2007_3 934 16365 36 0.026187 124 1306 20768 1.2690
ITC2007_4 273 4421 21 0.149968 0 4 47869 10.8276
ITC2007_5 1018 8719 42 0.008693 343 407 1567 0.1797
ITC2007_6 242 7909 16 0.061555 15 2622 30343 3.8365
ITC2007_7 1096 13795 80 0.019323 358 2620 262 0.0190
ITC2007_8 598 7718 80 0.045489 101 229 409 0.0530
ITC2007_9 169 624 25 0.078402 26 9 †2909 †4.6619
ITC2007_10 214 1415 32 0.049713 53 91 †12184 †8.6106
ITC2007_11 934 16365 26 0.026187 93 1306 54347 3.3209
ITC2007_12 78 1653 12 0.184482 4 684 10631 6.4313
D1-2-17 281 37 38 0.053254 21 1 2428 65.6216
D5-1-17 277 43 45 0.087166 53 0 3653 84.9535
D5-1-18 306 49 45 0.066560 47 0 3245 66.2245
D5-2-17 344 43 45 0.092447 2 0 8362 194.4651
D5-2-18 425 47 59 0.083629 6 0 6619 140.8298
D5-3-18 132 43 22 0.081309 2 0 1406 32.6977
D6-1-18 511 57 60 0.059975 74 0 9793 171.8070
D6-2-18 539 57 78 0.067639 10 0 7883 138.2982

4.2 Decomposed instances

After applying Algorithm 1 some problems are decomposed to subproblems. For
most instances a number of examinations and students are removed since they
are in e�ect noise. The resulting subproblems are presented in Table 2. The name
of each subproblem follows the pattern d_i_(Ex_Sy_IDz), where d is the name
of the originating instance, i is a number that assumes value 1 for the smallest
subproblem and is incremented by 1 for each subsequent subproblem (subprob-
lems are ordered by size = number of exams), x is the number of examinations, y
is the number of students and z is the smallest examination number that exists in
the subproblem. Number z is needed in order to di�erentiate among subproblems
having the same number of examinations and same number of students. This is
indeed the case for subproblems D1-2-17_1 and D1-2-17_2 that both have 8
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examinations and 1 student but in the �rst case the identifying examination is
217 while for the second case the identifying examination is 257. Note that in
Table 2 the number of examinations and the number of students exclude noise
examinations and noise students respectively. Again, the presence of symbol ∗
denotes that the corresponding integer cost is optimal. It should be also noted
that the normalized cost is computed by dividing the integer cost by the number
of students (including noise ones) that exists in the originating instance.

5 Optimality proving tools

We have identi�ed three di�erent approaches to prove optimality for certain
instances, and we present them below. Under certain conditions (number of
exams, con�ict density, current best known solution, number of periods) these
approaches may be able to prove that a solution is indeed optimal.

5.1 Mixed Integer Programming

As optimality is our main concern the �rst thoughts that come to mind are
Linear Programming and Mixed Integer Programming. The mathematical model
described below can solve an UETP instance, provided that the instance size is
manageable. For a graph G = (V,E) where vertices V serve as the exams, each
edge in E means that two examinations have common students. The weight of
an edge Wv1,v2 connecting vertices v1 and v2 is equal to the number of common
students these examinations have. P is the number of available periods.

The integer decision variables vn in Equation 1 denote the period an exami-
nation will take place while the derived binary decision variables in Equation 2
help us to activate or deactivate penalties in the objective function in Equa-
tion 3. The constraint in Equation 4 forces examinations with common students
to take place in di�erent periods. Equation 5 forces binary decision variables in
Equation 2 to indicate the distance between two exams. This constraint is not
linear but capable solvers like IBM ILOG CPLEX using mathematical modeling
tricks are able to linearize it out of the box. Equation 6 allows only one of the
penalty indicating variables in Equation 2 to be active at any time. This con-
straint is redundant but its presence seems to help the solver in reaching better
solutions.

vn ∈ [0, P ) ∀n ∈ 1 . . . |V| (1)

y16v1,v2 ∈ {0, 1} ∀(v1, v2) ∈ E
y8v1,v2 ∈ {0, 1} ∀(v1, v2) ∈ E
y4v1,v2 ∈ {0, 1} ∀(v1, v2) ∈ E
y2v1,v2 ∈ {0, 1} ∀(v1, v2) ∈ E
y1v1,v2 ∈ {0, 1} ∀(v1, v2) ∈ E

(2)
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Table 2. Problems resulted by decomposed instances of Table 1 - All noise examina-
tions and noise students are removed

Instance id Exams Students Con�ict Density Best known cost Best known normalized cost
car92_1(E533_S18328_ID1) 533 18328 0.143139 67084 3.6421
car91_1(E669_S16750_ID1) 669 16750 0.133375 71727 4.2379
ear83_1(E190_S1125_ID1) 190 1125 0.266945 36473 32.4204
hec92_1(E81_S2823_ID1) 81 2823 0.420679 28325 10.0337
kfu93_1(E428_S5194_ID1) 428 5194 0.064326 68462 12.7990
lse91_1(E378_S2724_ID1) 378 2724 0.063576 26643 9.7737
pur93_1(E2336_S29766_ID1) 2336 29766 0.031566 120144 4.0009
rye93_1(E485_S11425_ID1) 485 11425 0.075590 89999 7.8376
sta83_1(E30_S162_ID1) 30 162 0.717241 ∗16002 ∗26.1899
sta83_2(E47_S210_ID3) 47 210 0.351526 ∗47250 ∗77.3322
sta83_3(E62_S239_ID4) 62 239 0.364357 ∗32695 ∗53.5106
tre92_1(E258_S4355_ID1) 258 4355 0.184840 33094 7.5904
uta92_1(E617_S21264_ID1) 617 21264 0.127539 62675 2.9472
ute92_1(E7_S20_ID30) 7 20 0.904762 ∗645 ∗0.2346
ute92_2(E177_S2729_ID1) 177 2729 0.090588 67445 24.5344
yor83_1(E181_S941_ID1) 181 941 0.288889 32375 34.4049
ITC2007_1_1(E582_S7798_ID1) 582 7798 0.054563 5628 0.7139
ITC2007_2_1(E9_S33_ID396) 9 33 0.888889 ∗0 ∗0.0000
ITC2007_2_2(E623_S9636_ID1) 623 9636 0.020856 1538 0.1232
ITC2007_3_1(E810_S15726_ID1) 810 15726 0.034214 20768 1.2690
ITC2007_4_1(E273_S4421_ID1) 273 4421 0.149968 47869 10.8276
ITC2007_5_1(E11_S9_ID434) 11 9 0.690909 ∗0 ∗0.0000
ITC2007_5_2(E13_S41_ID206) 13 41 0.487179 ∗0 ∗0.0000
ITC2007_5_3(E14_S263_ID120) 14 263 0.989011 189 0.0217
ITC2007_5_4(E637_S7559_ID1) 637 7559 0.018236 1378 0.1580
ITC2007_6_1(E4_S12_ID5) 4 12 1.000000 ∗33 ∗0.0042
ITC2007_6_2(E7_S75_ID122) 7 75 0.666667 ∗7 ∗0.0009
ITC2007_6_3(E27_S210_ID9) 27 210 0.293447 146 0.0185
ITC2007_6_4(E189_S7386_ID3) 189 7386 0.093662 30157 3.8130
ITC2007_7_1(E18_S143_ID178) 18 143 0.732026 ∗0 ∗0.0000
ITC2007_7_2(E720_S10034_ID2) 720 10034 0.040604 262 0.0190
ITC2007_8_1(E497_S7388_ID1) 497 7388 0.062764 409 0.0530
ITC2007_9_1(E143_S603_ID2) 143 603 0.105683 2909 4.6619
ITC2007_10_1(E7_S81_ID1) 7 81 1.000000 ∗196 ∗0.1385
ITC2007_10_2(E9_S91_ID78) 9 91 0.888889 ∗14 ∗0.0099
ITC2007_10_3(E11_S29_ID87) 11 29 1.000000 ∗54 ∗0.0382
ITC2007_10_4(E12_S111_ID121) 12 111 0.984848 1021 0.7216
ITC2007_10_5(E15_S59_ID200) 15 59 0.857143 292 0.2064
ITC2007_10_6(E16_S220_ID133) 16 220 0.958333 878 0.6205
ITC2007_10_7(E16_S124_ID166) 16 124 0.800000 338 0.2389
ITC2007_10_8(E16_S56_ID51) 16 56 0.550000 76 0.0537
ITC2007_10_9(E17_S143_ID149) 17 143 0.757353 836 0.5908
ITC2007_10_10(E19_S208_ID13) 19 208 0.964912 2356 1.6650
ITC2007_10_11(E23_S215_ID98) 23 215 0.909091 6123 4.3272
ITC2007_11_1(E841_S15857_ID1) 841 15857 0.031989 54347 3.3209
ITC2007_12_1(E5_S62_ID35) 5 62 0.900000 ∗22 ∗0.0133
ITC2007_12_2(E69_S1464_ID1) 69 1464 0.232310 10609 6.4180
D1-2-17_1(E8_S1_ID217) 8 1 1.000000 ∗5 ∗0.1351
D1-2-17_2(E8_S1_ID257) 8 1 1.000000 ∗5 ∗0.1351
D1-2-17_3(E10_S1_ID119) 10 1 1.000000 ∗17 ∗0.4595
D1-2-17_4(E11_S1_ID218) 11 1 1.000000 ∗26 ∗0.7027
D1-2-17_5(E12_S1_ID189) 12 1 1.000000 ∗36 ∗0.9730
D1-2-17_6(E13_S2_ID100) 13 2 0.538462 ∗0 ∗0.0000
D1-2-17_7(E14_S1_ID173) 14 1 1.000000 ∗62 ∗1.6757
D1-2-17_8(E18_S1_ID1) 18 1 1.000000 ∗150 ∗4.0541
D1-2-17_9(E18_S1_ID51) 18 1 1.000000 ∗150 ∗4.0541
D1-2-17_10(E28_S2_ID7) 28 2 0.592593 ∗190 ∗5.1351
D1-2-17_11(E120_S18_ID44) 120 18 0.164286 1787 48.2973
D5-1-17_1(E11_S3_ID98) 11 3 1.000000 ∗48 ∗1.1163
D5-1-17_2(E13_S3_ID99) 13 3 0.846154 ∗12 ∗0.2791
D5-1-17_3(E200_S34_ID5) 200 34 0.158945 3593 83.5581
D5-1-18_1(E9_S2_ID263) 9 2 1.000000 ∗8 ∗0.1633
D5-1-18_2(E13_S3_ID88) 13 3 0.846154 ∗12 ∗0.2449
D5-1-18_3(E14_S2_ID200) 14 2 0.736264 ∗10 ∗0.2041
D5-1-18_4(E223_S41_ID1) 223 41 0.118046 3215 65.6122
D5-2-17_1(E18_S1_ID199) 18 1 1.000000 ∗108 ∗2.5116
D5-2-17_2(E324_S42_ID1) 324 42 0.101307 8254 191.9535
D5-2-18_1(E18_S1_ID97) 18 1 1.000000 54 1.1489
D5-2-18_2(E56_S5_ID94) 56 5 0.318182 140 2.9787
D5-2-18_3(E345_S41_ID1) 345 41 0.116144 6425 136.7021
D5-3-18_1(E5_S2_ID40) 5 2 1.000000 ∗6 ∗0.1395
D5-3-18_2(E7_S1_ID59) 7 1 1.000000 ∗18 ∗0.4186
D5-3-18_3(E118_S40_ID3) 118 40 0.097349 1382 32.1395
D6-1-18_1(E12_S1_ID470) 12 1 1.000000 ∗7 ∗0.1228
D6-1-18_2(E22_S2_ID85) 22 2 0.636364 ∗32 ∗0.5614
D6-1-18_3(E403_S52_ID1) 403 52 0.092947 9754 171.1228
D6-2-18_1(E14_S1_ID1) 14 1 1.000000 ∗1 ∗0.0175
D6-2-18_2(E22_S1_ID343) 22 1 1.000000 ∗56 ∗0.9825
D6-2-18_3(E493_S54_ID3) 493 54 0.077904 7826 137.2982
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min 16 ∗
∑

v1,v2∈E
Wv1,v2 ∗ y16v1,v2 + 8 ∗

∑
v1,v2∈E

Wv1,v2 ∗ y8v1,v2

+4 ∗
∑

v1,v2∈E
Wv1,v2

∗ y4v1,v2 + 2 ∗
∑

v1,v2∈E
Wv1,v2 ∗ y2v1,v2

+
∑

v1,v2∈E
Wv1,v2 ∗ y1v1,v2

(3)

s.t. v1 ̸= v2 ∀(v1, v2) ∈ E (4)

y8v1,v2 = (v1 − v2 = 2) + (v1 − v2 = −2) ∀(v1, v2) ∈ E
y4v1,v2 = (v1 − v2 = 3) + (v1 − v2 = −3) ∀(v1, v2) ∈ E
y2v1,v2 = (v1 − v2 = 4) + (v1 − v2 = −4) ∀(v1, v2) ∈ E
y1v1,v2 = (v1 − v2 = 5) + (v1 − v2 = −5) ∀(v1, v2) ∈ E

(5)

y16v1,v2 + y8v1,v2 + y4v1,v2 + y2v1,v2 + y1v1,v2 ≤ 1 ∀(v1, v2) ∈ E (6)

Finally, let I+ be the set of sets of interchangeable examinations as de�ned
in [8]. In order to break a symmetry of the problem we enforce an order over
the examinations belonging to each set. This is formulated in Equation 7, where
members of each set S of the sets in I+ are ordered among each other.

vi ≤ vi+1 ∀vi ∈ S : i ∈ 1 . . . |S| − 1, ∀S ∈ I+ (7)

Other formulations of the mathematical model have been proposed in the
past. An example is the work in [4] that uses the so-called channeling con-
straints that were originally proposed in [1]. A di�erence in our model is that we
employ the concept of interchangeable examinations that are embedded in the
formulation. Moreover, the objective function is constructed equivalently, but
di�erently, in our case.

5.2 Intelligent enumeration

Some of the instances have a comparatively small number of available periods.
It's noteworthy that even small sub-problems with a few periods and a relatively
low number of examinations are hard to optimally solve by current state of the
art mixed integer programming solvers. A new method was developed to handle
instances, and this method depending on the number of examinations, available
periods and the con�ict density of the corresponding graph is able to solve some
problems to optimality. Moreover, the same method can be exploited and reach
good solutions for bigger instances.
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A proven optimal result for a benchmark instance of the UETP 9

To best describe this process we will use a toy example with its graph rep-
resentation pictured in Figure 1. Let the available periods for this problem to
be four. The problem consists of �ve examinations with a varying number of
common students between certain pairs of exams. Note that exams 1, 2, 3 form a
non trivial clique e.g. they are a complete sub-graph of the graph. As no student
is allowed to participate in more than one examination per period, those three
examinations will end up in three di�erent periods. Also, examination 5 with
a weighted degree of just 2 doesn't seem to play a major part in the grander
scheme of things.

1

2

100

3

150

4
50200

5
2

Fig. 1. Toy example for demonstrating the intelligent enumeration scheme.

The method can be used to either search for a good solution or to prove
optimality, based on characteristics of the problem in question. The main idea
remains the same for both cases. Firstly, we reduce the problem size by removing
some of its exams. Then, we generate partial solutions, evaluate their cost and
if it falls under some cut-o� limit, which could be the cost of the best known
solution, we �ll the missing examinations to form a complete solution. This
process is expected to act as a �lter and has the potential to be computationally
faster than a full enumeration.

The main idea of the method is to exploit a clique in the graph. In selecting a
clique, it usually makes sense to choose the maximum clique. In the toy example,
the maximum clique is the set of examinations {1, 2, 3}. It is guaranteed that
the clique's examinations will end up on di�erent periods which, for convenience,
we name after them, {P1, P2, P3} correspondingly. Since we have four available
periods we will name the period that will not be occupied by any of them as PE .
The remaining examinations {4, 5} can be easily checked in this small example
about their possible �nal positions. So, examination 4 can be placed in any of
{P2, P3, PE} and examination 5 can join any period {P1, P2, P3, PE}.

Since examinations for the clique are �xed in periods {P1, P2, P3} the possible
assignments for examinations 4 and 5 are (4 : P2, 5 : P1), (4 : P2, 5 : P3), (4 :
P2, 5 : PE), (4 : P3, 5 : P1), (4 : P3, 5 : P2), (4 : P3, 5 : PE), (4 : PE , 5 : P1), (4 :
PE , 5 : P2), (4 : PE , 5 : P3) while (4 : P2, 5 : P2), (4 : P3, 5 : P3), (4 : PE , 5 : PE)
are infeasible as examinations 4 and 5 are in con�ict. In total, there are 9 feasible
schedules. If we had opted to leave examination 5 out, there would be just 3
feasible schedules (4 : P2), (4 : P3), (4 : PE).
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Initially, we ignore examination 5 and we examine all possible permutations
of {P1, P2, P3, PE}. We complement every permutation with each of the 3 pos-
sible partial schedules (4 : P2), (4 : P3), (4 : PE). Since each schedule and its
reverse have exactly the same objective value, we can skip mirrored permuta-
tions, e�ectively cutting o� half of the search space, thus eliminating this kind of
symmetry. Nevertheless, for large numbers of periods, it is unrealistic to traverse
all possible permutations, even by considering half of them. In the toy example,
we evaluate (4!/2) ∗ 3 partial solutions and we keep those that have cost under
a cut-o� barrier. The unscheduled examination 5 has a weighted degree of just
2, while other examinations have weighted degrees ranging from 52 to 350. So,
most of the partial solutions should be �ltered out.

Examination 5 of the toy example was initially ignored. A similar decision
must be taken for each problem, about the examinations that will be initially
ignored too. Unfortunately, this is not a trivial task. We cannot remove exam-
inations of the chosen clique, should we wish to do so we should pick another
clique. Intuitively, we want to initially ignore examinations with low degrees
and weighted degrees, as they are able to appear in more periods. Consequently,
they allow for more possible outcomes while at the same time their impact on
the objective function is minor. It should be noted that not all partial solutions
(solutions with ignored examinations still unscheduled) may lead to feasible solu-
tions. So, for the case that full enumeration is unrealistic, quick feasibility checks
can reveal unpromising partial solutions that are meaningless to be completed.
The method is tuned by balancing the number of possible partial schedules gen-
erated with respect to the impact that the selected examinations have on the
objective. The tuning is guided by selecting, through sampling, suitable exami-
nations that will hopefully result in cutting-o� many possible solutions. For the
toy example the costs of these partial solutions are depicted in Table 3

Table 3. Permutations and partial solutions costs for the toy example in Fig. 1

P1 P2 P3 PE 4 : P2 4 : P3 4 : PE

0 1 2 3 6800 6400 6200
0 1 3 2 4600 4000 4200
0 2 1 3 6800 7200 6600
0 2 3 1 5000 4800 5400
0 3 1 2 4600 5200 4800
0 3 2 1 5000 5200 5600
1 2 0 3 6400 6400 6000
1 2 3 0 6800 6400 6800
1 3 0 2 4400 4800 4800
1 3 2 0 6800 7200 7200
2 3 0 1 4400 4000 4400
2 3 1 0 6400 6400 6000
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To further augment our �lter while keeping computational cost low it's pos-
sible for partial solutions that are under the cut-o� barrier to calculate the
minimum cost each unscheduled examination can possibly introduce to the par-
tial solution. If the sum of those minimum costs plus our partial solutions cost
is under the cut-o� barrier, the partial solution may lead to a desired complete
solution. This process can be seen as a multi-layer �lter like the one depicted in
Fig. 2.

Fig. 2. Filter process.

5.3 Estimating lower bounds

Each students schedule is also an UETP sub-problem where his examinations
are a complete graph where all edges have a weight of 1. This problem can be
solved optimally for almost all instances, especially for those with a low number
of periods.

Summing up those minimum penalties for all students can provide us with
a lower bound. In the rare occasion that a solution's objective function is equal
to this bound then this solution is optimal.
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6 sta83 optimal solution

No optimality has ever been proved for any Carter's dataset instance until
now. In this section we show that the solution for sta83 having value 95947
(95947/611=157.0327 in decimal value, where 611 is the total number of stu-
dents for sta83) which appears in many papers is indeed optimal.

Instance sta83 consists of 139 exams, 13 periods and has a relatively low
con�ict density of value 0.14. The instance has no noise examinations and no
noise students as de�ned in Section4. The instance is comprised of 3 disconnected
components as shown in Fig. 3.

sta83_30

sta83_47

sta83_62

Fig. 3. Disconnected components of sta83. The weight of each edge is indicated by its
thickness.

We can divide the problem into three independent subproblems because these
components are disconnected. That is, there are three unique groups of students,
each of which does not have an examination in common with the other two
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groups, allowing us to work on each component independently. The sum of these
answers would be the optimal solution provided that all three of them are solved
optimally. Motivated by the prospect of proving optimality for a Carter's dataset
instance, we focused our attention on this task, and we managed to optimality
solve each subproblem using a di�erent approach, resulting in a novel way of
handling high con�ict-density components.

6.1 Component sta83_62

This is the largest component of sta83, having 62 examinations and a con�ict
density of 0.36. We tried to solve it using the model described in Section 5.1
using the IBM ILOG CPLEX IP solver. Unfortunately, after several hours the
solver was unable to prove optimality. We tried to warm start the solution with
the current best solution and have set the MIP emphasis parameter �rst to �em-
phasize optimality over feasibility� and then to �emphasize moving best bound�.
Both attempts were unsuccessful.

We noticed that the component has a special structure. It contains 10 sets of
examinations with each set consisting of exactly 5 interchangeable examinations.
These examinations amount for 50 of the 62 examinations that the component
has in total. Details of these sets are presented in Table 4. Since interchangeable
examinations can freely swap places with each other while keeping the objec-
tive value unchanged, the introduction of the symmetry breaking constraints
of Equation 6 greatly improved the solver's e�ciency in proving the optimal
solution.

We also noticed that 3 examinations existed (72, 133, 136) in the graph that
had connections with all other exams. So, we tried an approach that �xed these
3 examinations in speci�c periods and then tried to solve the remaining problem
using IBM ILOG CPLEX. This time, the result was successful, the solver was
able to return a result, either optimal or infeasible in a few minutes. It should be
noted that infeasibility occurs because the cost of the best known solution is used
as a cuto� constraint. So, we had only to try all possible places for positioning
the 3 examinations and then solve the resulting problem. Since there are only 13
periods in instance sta83, this would mean that only

(
13
3

)
= 286 con�gurations

existed that should be multiplied by 3!
2 since the 3 examinations can occupy the

�xed periods in any order (divided by 2 due to the inherent symmetry of the
problem).

By exploiting the above observations, IBM ILOG CPLEX IP solver was able
to solve each subproblem in a few minutes. After solving all subproblems, the
optimal solution for sta83_62 was proved to be 32695. This solution occurred
when examinations 72, 133 and 136 were �xed to periods 3, 6 and 8 respectively.
The symmetric solution also exists and is produced by �xing examinations 72,
133 and 136 to periods 9, 6 and 4. Of course, many more symmetric solutions
exist due to the interchangeable exams.
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6.2 Component sta83_47

This component proved to be the easy part. It consists of 47 examinations and
has a con�ict density of 0.35. As described in subsection 5.3 we can estimate a
lower bound by adding the minimum cost each student's schedule could possibly
in�ict. So, for each student in isolation, an IP model is formulated that given
only the number of periods and the number of examinations that this student
participates, decides about the schedule that results to the minimum possible
cost. Of course, since each student is examined in isolation if two students share
the same number of examinations then the problem needs to be solved just once.
In practice, this is the case for several students. By adding minimum penalties
of all students we have a lower bound for this component, which is 42750. The
best known solution turns out to have cost equal to the lower bound obtained
in this manner. Thus, the optimal solution for this component is 47250.

6.3 Component sta83_30

This was the last component to solve. It's the smallest one with just 30 examina-
tions but a high con�ict density of 0.72. With high hopes since just the smallest
piece of the puzzle was missing, we were surprised to �nd out that to the best of
our ability our MIP models were not able to prove an optimal solution. We have
tried the same trick that we have used successfully in component sta83_62. We
noticed that in the case of sta83_30 there is only one examination (134) that is
connected to every other one. So, we tried to �x this examination to each period
in turn and then to solve the remaining problems using IBM ILOG CPLEX. Un-
fortunately, this did not helped the solver to prove the optimality of the solution.
Each subproblem seemed to run forever.

By observing closely the high density graph of this component we came up
with the idea of separating examinations with high degrees and examinations
with relatively low degrees. A similar idea has been exploited by [11] and others
in constructing timetables giving precedence to high degree examinations and

Table 4. Component sta83_62, sets of interchangable examinations and their charac-
teristics.

Set Degree Weighted Degree

{17, 38, 58, 85, 120} 8 8
{18, 39, 59, 86, 121} 16 240
{19, 40, 60, 87, 122} 16 264
{20, 41, 61, 88, 123} 15 168
{21, 42, 62, 89, 124} 12 88
{22, 43, 63, 90, 125} 16 160
{23, 44, 64, 91, 126} 15 160
{24, 45, 65, 92, 127} 16 264
{25, 46, 66, 93, 128} 16 280
{26, 47, 67, 94, 129} 16 280
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leaving for a later phase the low degree ones. In our approach, we isolated the
maximum clique, which for this particular instance comprises of 12 examinations
and tried to arrange those examinations to the 13 periods leaving one period
empty for each possible arrangement.

A signi�cant observation is that irrelevant of the periods that the clique
occupies, the possible placements for the remaining examinations will be the
same because their possible positions are constrained by the examinations of
the clique. By multiplying the number of those possibilities with the number of
permutations of the periods we were able to count all possible solutions to be
13!∗109152 where 13! is the number of possible period permutations and 109152
is the number of possible ways to schedule the remaining examinations for the
speci�c component. This number is still quite large so we exploited the method
described in Section 5.2. We aim to �nd a set of examinations that has minor
impact on the cost but at the same time possible �nal positions of the sets'
examinations might be disproportionate large. Fig. 4 which shows the degrees
and weighted degrees of examinations was used as a visual aid for identifying
the examinations needed. These examinations should reside at the lower left
corner and should have the desirable characteristics. For sta83_30 a good set of
examinations proved to be {5, 131, 28, 48, 76} that manages to lower multiplier
109152 to just 47.

Fig. 4. Scatter plot of sta83_30 that gives insight about the set of examinations that
should be scheduled last

The unscheduled examinations weighted degree is comparatively low and so
the method has the potential of working e�ectively. By keeping in the set of
initially unscheduled examinations, examinations that can easily move around
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the schedule, the number of possible partial solutions becomes quite low. More-
over, the low weighted degree that these examinations have prohibits from heavy
impacts on the objective function. So, the �ltering process is working. For the
case of sta83_30 this �intelligent� search resulted in 13 distinct optimal solu-
tions (and their symmetric ones) all having the same cost, 16002. The search
was implemented in Julia [5] using its parallel computing features for the CPU.
Five high end workstations were simultaneously running the experiment and the
time needed was about 12 hours.

7 Conclusions

This work was about the uncapacitated examination timetabling problem. It
continues previous work of our team. A key observation is that even for this
rather simple scheduling problem that is only an abstraction of the correspond-
ing real-life problem, the proof that a given solution is optimal is de�nitely not
trivial. Nevertheless, our team succeeded in proving the optimality of a certain
instance, namely sta83 of the Carter's dataset. In order for this to happen we
had to decompose the problem into independent subproblems. Having 3 prob-
lems of moderate size gave us the opportunity of experimenting with various
approaches. No method was able to solve all three subproblems. After many
experiments and carefully analyzing the components, we �nally discovered three
approaches that were able to prove optimality. Each subproblem was solved by a
di�erent approach and the optimal solution for sta83 was proved. Furthermore,
we contributed two new best solutions to public dataset problems, alongside with
several optimal solutions to subproblems that exist in various instances.
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