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Abstract. The exam scheduling problem is a computationally di�cult
problem whose solution assigns exams to timeslots and rooms while sat-
isfying a variety of examinee and institutional requirements. This paper
proposes a generic speci�cation of the problem that has wide applicabil-
ity to real-world situations. In particular, the number of student hard-

ships (i.e., students assigned multiple exams in a speci�ed time interval)
is de�ned in a way to encompass most contexts. Constraint program-
ming (CP) implementations of the generic speci�cation are then de�ned
to model the timeslot assignment subproblem and a room assignment
subproblem independently.
Two approaches are proposed and implemented to solve the overall prob-
lem from the subproblems: the use of a novel group of cuts, and the use
of bin-packing global constraints. The cuts provide necessary conditions
for a feasible solution of the timeslot assignment problem to have feasible
room assignments. It is also shown that these cuts are su�cient condi-
tions in certain general cases. A �nal section gives an empirical study
using the data from the University of British Columbia.

1 Introduction

Educational timetabling is an interdisciplinary research area that has received a
lot of attention over the last 20 years. In essence, the problem involves assigning
university exams to timeslots and rooms in such a way that students do not
write any of their own exams simultaneously, which can be elaborated on by
imposing other institutional requests. Automated timetabling �rst caught the
attention of mathematicians in the 1960's, at a time when most scheduling was
done manually [6,8]. Fast forward 60 years to where the theory has advanced
remarkably but in practice the scheduling software many institutions use do not
implement these new research techniques, and thus institutions still struggle to
get quality timetables that satisfy student and instructor needs [12]. Part of this
is due to the research gap between theory and reality [10].

To address this gap, there have been three international timetabling com-
petitions (ITCs) focusing on university timetabling. Since this problem is com-
putationally di�cult (i.e., NP-hard), researchers have tried various methods to
tackle it. A sample of these methods include heuristics such as simulated anneal-
ing, population-based algorithms such as memetic algorithms, graph colouring
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heuristics, integer programming, and constraint-based methods (for recent lit-
erature reviews and surveys, refer to [1,3,7,13]). The winner of ITC 2007, who
used a constraint satisfaction program with iterative forward search and a hill
climbing heuristic, applied their model at Purdue University, with the possibility
of it being utilized by other American universities [11]. In other real-life applica-
tions, constraint programming (CP) and integer programming appear to be the
popular modeling techniques of choice [1,2,4,9], likely due to the �exibility these
methods have in expressing constraints and the acceptable solutions provided.
However, to further complicate the problem, many institutions have unique pref-
erences, and therefore their scheduling needs are beyond the scope of the models
that solve the exam scheduling problem for other universities and the benchmark
datasets used in the ITCs. Therefore, even though there is an abundance of soft-
ware within the academic community, institutions may be forced to continue
producing schedules with rigid algorithms that must then be post-processed and
�xed manually to meet complex scheduling requirements.

One of the complexities of the exam scheduling problem is that in most cases,
for each exam, at least two assignments need to be made, a timeslot assignment
and a room assignment, where the timeslot assigned to an exam in�uences the
rooms available for that exam. Some authors have attempted to address this by
decomposing the problem into di�erent stages, typically a timeslot assignment
phase and room assignment phase, though other decompositions have also been
introduced [2,9]. This decoupling becomes increasingly complicated when multi-
ple exams are allowed in one room. In this work we also explore decoupling the
problem into timeslot and room phases. We introduce a necessary condition for
the timeslot assignment model, where we generate cuts to direct the model to-
wards producing feasible timeslot assignment solutions that will result in feasible
room assignments in the next phase. These necessary conditions are su�cient
for the case when each room can be assigned at most one exam at any given
time.

The remainder of the paper is organized as follows. In Section 2, we provide a
generic speci�cation of the exam scheduling problem and the requirements that
can be imposed on a solution. Here we introduce the student hardship require-
ment, which to the best of our knowledge, has not until now been given a formal
speci�cation in the literature. In Section 3.1, we describe the corresponding CP
implementation of the generic speci�cation for the timeslot assignment model.
Here we describe the new necessary condition on the timeslot assignment that
assists in �nding a feasible room assignment. In Section 3.2, the CP requirements
for the room assignment model are explained. Finally, in Section 4, we discuss
the results from the experiments conducted with data from the Okanagan cam-
pus of the University of British Columbia (UBC), where we speci�cally focus on
reducing student hardships of three types, and demonstrate the validity of the
two phase model.
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2 Generic Speci�cation of the Exam Scheduling Problem

Let Z+ denote the set of nonnegative integers and Z++ = Z+ \{0}. All intervals
throughout will be subsets of Z+ and for k1, k2 ∈ Z+, k1 ≤ k2, denote the
(integer) interval [k1, k2] = {k1, . . . , k2}, and de�ne [k2] = [1, k2]. For an interval
[a, b], de�ne the length of [a, b] to be ℓ([a, b]) = b − a if b > a, and ℓ ([a, b]) =
ℓ(∅) = 0 otherwise. Moreover, for a �nite monotonically increasing sequence of
integers r0, . . . , rq, de�ne r(i, j] to be the interval [ri + 1, rj ] for 0 ≤ i < j ≤ q.

The exam scheduling problem is de�ned as the following: given a �nite set of
pairwise disjoint1 integer intervals T = {[s1, f1], . . . , [sm, fm]} called the times-
lots, a set P called the persons, a set E of subsets of P called the exams, a
function ε : E → Z++ called the exam sizes, a function δ : E → Z++ called
the exam durations, a set R called the rooms, and a function σ : T × R → Z+

called the temporal room sizes, �nd an assignment τ : E → T called the timeslot
assignment, and an assignment ρ : E → R called the room assignment, such that
for all E,E′ ∈ E, E ̸= E′, the following four requirements are satis�ed.

Requirement 1 (Person Single-Tasking) τ(E) ̸= τ(E′) if E ∩ E′ ̸= ∅.

Requirement 2 (Exam Duration) δ(E) ≤ ℓ(τ(E)).

Requirement 3 (Room Single-Tasking) ρ(E) ̸= ρ(E′) if τ(E) = τ(E′).

Requirement 4 (Room Size) ε(E) ≤ σ (τ(E), ρ(E)).

Requirement 1 ensures that no person (including the invigilator) has two
exams assigned to the same timeslot (see Requirement 6 for an extension to this
requirement for the case of overlapping timeslots). Requirement 2 restricts the
duration of an exam to not exceed the length of its assigned timeslot. Moreover,
Requirement 3 ensures that no room is assigned two di�erent exams during
a timeslot (see Requirement 7 for a relaxation of this requirement). Finally,
Requirement 4 ensures that the room assigned to an exam during the assigned
timeslot can accommodate the exam's size requirement2 (see Requirement 8 for
a relaxation of this requirement).

In this speci�cation, there is no distinction in the set of persons between
students and instructors as they both are present during their exam. In the case
of hardships, however, the students and instructors are separated as necessary
(see Section 2.2). Moreover, for each person p ∈ P and exam E ∈ E, if p ∈ E,
then we say p writes E, or E is written by p, even though p may be an instructor.

We will refer to [sk, fk] ∈ T as timeslot k. As notational convenience, let
σk(R) = σ([sk, fk], R) for each timeslot k. The temporal room sizes function
allows one to ensure that a room R does not use a timeslot k by specifying
σk(R) = 0. This may be necessary if a room is closed during the timeslot, or to

1 The pairwise disjoint restriction is relaxed in Requirement 6. Moreover, there is no
loss of generality for exam scheduling in assuming that time can be discretized.

2 Typically, for every exam E, ε(E) = |E| − 1.
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limit timeslots that overlap for the room (see Requirements 7 and 8). Moreover,
for each room R ∈ R, let T (R) = {[sk, fk] ∈ T : σk(R) > 0} be called the
e�ective timeslots of room R.

A nonempty collection A of subsets of a set A is called intersecting if for all
A1, A2 ∈ A, A1 ∩ A2 ̸= ∅. Using the maximal intersecting subsets of exams for
Requirement 1 is desired but �nding them is computationally impractical (i.e.,
NP-hard). Instead, there are some natural intersecting subsets that can be used.
For each person p ∈ P , let the intersecting subset of exams that p writes be
denoted by

E(p) = {E ∈ E : p ∈ E}.

Moreover, the maximal intersecting subsets of timeslots � we will call this col-
lection B∗ � is the set of maximal cliques of the corresponding interval graph
which can be found in linear time.

We will assume a �xed τ and ρ in the de�nitions that follow.

2.1 Extending the Exam Scheduling Problem

The exam scheduling problem can be extended to include a variety of other
constraints from real-world contexts.

The �rst of these extensions further limits τ and ρ for particular situations.

Requirement 5 (Time and Room Specific) An exam E ∈ E can be forced to
be assigned a timeslot from a subset B of timeslots by the additional requirement
τ(E) ∈ B. Moreover, the exam can be forced to be assigned a room from a subset
Q of rooms by the additional requirement ρ(E) ∈ Q.

In certain cases of modeling the exam scheduling problem, it may be nec-
essary to allow the timeslots of the problem to overlap (i.e., not be pairwise
disjoint). This occurs most commonly when modeling exams that are allowed
varying lengths.

Requirement 6 (Overlapping Timeslots) If the timeslots are allowed to
overlap, then Requirement 1 is replaced with:

τ(E) ∩ τ(E′) = ∅ if E ∩ E′ ̸= ∅.

Moreover, Requirement 3 is replaced with:

ρ(E) ̸= ρ(E′) if τ(E) ∩ τ(E′) ̸= ∅.

Note that Requirement 6 generalizes Requirement 1 as non-overlapping times-
lots satisfy τ(E) ∩ τ(E′) = ∅ if and only if τ(E) ̸= τ(E′).

The third of these extensions allows for the use of a large room such as a
gym to host several exams at once. For each R ∈ R and timeslot k, let

CR,k = {E ∈ E : ρ(E) = R, τ(E) = [sk, fk]}
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Exam Scheduling With Hardship Minimization 5

be called the concurrent exams in room R during timeslot k.
If more than one exam is allowed in a room during a given time, then Require-

ment 3 is either removed entirely or it is replaced with the following requirement
to limit the number of concurrent exams assigned to the room.

Requirement 7 (Room Task Limit) During a timeslot k, and for a room
R ∈ R, to limit the room to be assigned at most γk(R) concurrent exams, the
following is required:

|CR,k| ≤ γk(R).

Concurrent exams pose logistical challenges if timeslots overlap. In practice,
concurrent exams assigned to a room can start at the same time but may �nish
at di�erent times. These exams would be assigned di�erent overlapping timeslots
where one timeslot is contained in the other. Such a situation can be handled
by using the larger timeslot for both exams. This is su�cient since it is not
the case, in practice, that an exam would start in the middle of a timeslot of
another exam in the same room and, say, end later. Thus, in order to simplify the
model without losing applicability, we can e�ectively model concurrent exams for
rooms that allow multiple tasks by limiting these rooms to have non-overlapping
timeslots when they multi-task. More formally, this limitation is for all R ∈ R

and all [sk, fk], [sk′ , fk′ ] ∈ T (R) with k′ ̸= k, if γk(R) > 1 and γk′(R) > 1,
[sk, fk] ∩ [sk′ , fk′ ] = ∅. If γk(R) = 1, then other timeslots can intersect [sk, fk].

With more than one exam allowed in a room at a given time, Requirement 4
is replaced with the following requirement.

Requirement 8 (Room Multitasking Size) For a room R ∈ R to host con-
current exams, for every timeslot k,∑

E∈CR,k

ε(E) ≤ σk(R).

Requirement 9 (Coupled Exams) To require two exams E and E′ to be
written

1. during the same timeslot, then require τ(E) = τ(E′), or
2. in the same room, then require ρ(E) = ρ(E′).

Note that Requirement 9.2 only makes sense if we have Requirement 8 as
well.

2.2 Measuring Hardships

We focus here on measuring, and later minimizing, the number of times persons
have a certain number of examinations assigned to timeslots that are within a
certain amount of time.

Let d ∈ Z+ represent a length of time. We �rst start by collecting the times-
lots of T that are within d time units of each other as measured by the di�erence
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of the latest �nish time with the earliest start time of its members. This set is
de�ned by:

Bd =
k⋃

i=1

{B ⊆ T : [sj , fj ] ∈ B where sj ≥ si and fj ≤ si + d} .

For a given person p ∈ P , the exams written by person p during a B ∈ Bd is
given by

Wp,B = {E ∈ E(p) : τ(E) ∈ B}.
For a given positive integer w, representing a minimum number of writes, the
set of (w, d)-hardships (of τ) is de�ned to be

Hw,d = {(p,B) : p ∈ P,B ∈ Bd, |Wp,B | ≥ w}.

Thus |Hw,d| is the number of times persons are in at least w exams that are
assigned by τ to be within any d time units of the schedule.3

Example 1. Three Exams in 27 Hours Hardships
If a student at UBC writes three exams that span at most 27 hours from the

start of the �rst exam to the end of the last exam, then a 3-in-27-hours hardship
occurs and the student has the right to request another time to write one of the
exams. This creates many issues ranging from exam calibration and fairness to
exam security. It also puts an extra demand on the administrative and faculty
resources. Exam schedules having zero 3-in-27-hours hardships are thus clearly
valued.

UBC's examination period spans 12 days and there are four timeslots per
day: 8:30 a.m., 12:00 p.m., 3:30 p.m., and 7:00 p.m. However a Sunday only
has two timeslots: 12:00 p.m., and 3:30 p.m. Each exam is assumed to be
two and a half hours long. Discretizing time so that 8:30 a.m. on the �rst
day is at time 17 = 8.5 × 2, and is a Monday, the set of timeslots T have
�rst week time intervals Monday: [17, 22], [24, 29], [31, 36], [38, 43]; Tuesday:
[65, 70], . . . ; Sunday: [312, 317], [319, 324]; along with second week time intervals
[353, 358], . . . , [566, 571]. To measure those students having a hardship of 3 ex-
ams in 27 hours, the required timeslot sets are represented by B54 (half hour
increments). See Table 1 for some examples.

Thus to minimize the number of persons having a 3-in-27-hours hardship, τ
is chosen so as to minimize |H3,54|. It is also possible to restrict that no persons
have such a hardship by constraining |H3,54| to be zero. ⊓⊔

Requirement 10 (Hardships) For a positive integer w, representing a num-
ber of writes, and nonnegative real number d, representing a length of time, to
ensure that no persons have w examinations assigned to timeslots that are within
time d (i.e., no (w, d)-hardships), then require:

|Hw,d| = 0.

3 The set of persons P can be reduced here to just include students or just instructors
depending on the application of the hardship.
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Table 1. Example Timeslot Sets of B54 for 3-in-27-hours Hardships

Day Timeslot Sets Involving Day

First Monday {[17, 22], [24, 29], [31, 36], [38, 43], [65, 70]},

{[24, 29], [31, 36], [38, 43], [65, 70], [72, 77]},

{[31, 36], [38, 43], [65, 70], [72, 77], [79, 84]},

{[38, 43], [65, 70], [72, 77], [79, 84], [86, 91]}

First Sunday {[264, 269], [271, 276], [278, 283], [312, 317]},

{[271, 276], [278, 283], [312, 317], [319, 324]},

{[278, 283], [312, 317], [319, 324]},

{[312, 317], [319, 324], [353, 358]},

{[319, 324], [353, 358], [360, 365], [367, 372]}

Last Friday {[497, 502], [504, 509], [511, 516], [518, 523], [545, 550]},

{[504, 509], [511, 516], [518, 523], [545, 550], [552, 557]}

{[511, 516], [518, 523], [545, 550], [552, 557], [559, 564]}

{[518, 523], [545, 550], [552, 557], [559, 564], [566, 571]}

To ensure that these type of hardships are minimized, then include |Hw,d| as a
term in the minimizing objective function of the model.

A special class of hardship are back-to-back exams. These hardships occur
when a person writes two exams in two consecutive timeslots on the same day.
Using the timeslots from Example 1, the back-to-back hardships are represented
by H2,12. Given the regular nature of the timeslots of the example, a more
e�cient implementation is outlined at the end of the section entitled CP of
Requirement 10.

3 CP Implementation of the Generic Speci�cation

In what follows, we partition our CP implementation of the exam scheduling
problem into a timeslot assignment subproblem and into one room assignment
subproblem for each timeslot. The timeslot assignment subproblem is solved �rst
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and the result τ is used as input for each of the room assignment subproblems.
The room assignment subproblem for timeslot k assigns rooms to only those
exams assigned to timeslot k by τ . We say τ is room-assignable if the assign-
ment has a feasible room assignment subproblem solution for each timeslot. The
timeslot assignment subproblem contains constraints that are necessary and, in
all but one scenario, are also su�cient (see Theorem 1) to ensure that all of its
feasible solutions are also room-assignable. The scenario that cannot guarantee
su�ciency occurs when Requirement 8 is speci�ed. In this case, the timeslot as-
signment subproblem constraints are only necessary, although in practice do well
in �nding room-assignable solutions. An extension to the CP implementation of
the timeslot assignment subproblem is also described in Section 3.3 that ensures
all feasible solutions are room-assignable even with Requirement 8. However, it
may not be possible to use this extension in practice, depending on the size of
the input, as discussed in the Section 3.4. In order to highlight these performance
considerations in the discussion, the sizes are calculated in this section for some
of the relevant implementation options.

Throughout this section, we will use catalog of Beldiceanu, Carlsson and
Rampon [5] as the source for de�nitions of known constraint programming global
constraints. To facilitate the description of the implementation, the names of
constraint programming variables will use a bold typeface.

3.1 Timeslot Assignment Subproblem

The timeslot assignment subproblem �nds a timeslot assignment τ that ensures
the implicit existence of a feasible room assignment ρ without actually deter-
mining ρ. In this section, we describe a CP implementation of the generic speci-
�cation by �rst de�ning the decision variables and then de�ning the constraints
for each of the requirements.

Primary Decision Variables In order to �nd a τ satisfying the requirements,
for each E ∈ E, we de�ne a constraint programming integer-valued decision
variable tE whose domain is the set of indices of the timeslots, [m] = {1, . . . ,m},
with the understanding (to be encoded by the constraints) that if tE is bound to
k, then τ(E) = [sk, fk]. For any subset D of exams, we let TD = {tE : E ∈ D}
be the corresponding set of decision variables.

CP of Requirement 1 (Person Single-Tasking).
Requirement 1 can be restated as follows: each intersecting subset of exams of size
two must have the timeslot assignments of the exams di�erent from each other.
When this requirement is applied to any intersecting subset I ⊆ E of exams, the
timeslot assignments of any pair of exams from I must be di�erent from each
other, and so all of the timeslot assignments of exams from I must be di�erent
from each other. Thus we impose the global constraint alldifferent(TI) (see [5,
p. 434]) to implement Requirement 1 for all pairs of exams in I.

The larger the size of the intersecting subset of exams, the greater the possi-
ble propagation power of the alldifferent constraint. That being said, using
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the maximal intersecting subsets of exams would be ideal but it can be computa-
tional too expensive to �nd such subsets. If such sets are not known, then it can
be e�ective to use E(p) for each person p ∈ P . The key is that for all E,E′ ∈ E,
E ̸= E′ if {E,E′} is intersecting, then E ∩ E′ is a subset of at least one of the
intersecting subsets used.

CP of Requirement 2 (Exam Duration).
The duration requirement for an E ∈ E is implemented by restricting the initial
domain of tE directly by removing each k such that δ(E) > ℓ ([sk, fk]) (or
indirectly and equivalently, by using the constraint tE ̸= k).

CP of Requirements 3 and 4 (Room Single-Tasking) and (Room Size).
In order to ensure that τ is chosen to implicitly satisfy Requirements 3 and 4, we
consider a sequence of constraints that are parameterized by a positive integer
c which will ensure the necessary but not su�cient statement that the number
of exams of size larger than c assigned to a timeslot is at most the number of
rooms of size larger than c during the timeslot.

To implement this idea, de�ne E>
c = {E ∈ E : ε(E) > c} and for k ∈ [m],

de�ne R>

c,k = {R ∈ R : σk(R) > c}. The format of the restrictions are provided
by the set of triples Fc = {(k, 0, |R>

c,k|) : k ∈ [m]} for the global constraint
global_cardinality_low_up(TE>

c
, Fc) (see [5, p. 1040]). This constraint en-

sures that, for each k, the number of decision variables tE where E ∈ E>
c and

that are bound to k is between 0 and |R>

c,k|. In other words, the number of exams
E with ε(E) > c that are assigned by τ to timeslot k is at most the number of
rooms that have size larger than c throughout the timeslot.

A timeslot assignment τ satisfying the global_cardinality_low_up con-
straint for a �xed minimum size c does not guarantee that there is a feasible
room assignment ρ. But a sequence of these global_cardinality_low_up con-
straints does. Let [sk, fk] be a �xed timeslot. For this timeslot, we now consider
the number of distinct room sizes and let q = qk denote this number. De�ne
r0 = 0 and consider the (non-multi-)set of room sizes {σk(R) : R ∈ R>

0,k} =
{r1, . . . , rq} where the ri's are labeled so that they are strictly increasing. Note
that for an exam scheduling problem to be feasible, E>

rq = ∅. The CP constraints
for Requirements 3�4 are then

global_cardinality_low_up(TE>
ri
, Fri) for i ∈ [0, q − 1].

(Constraints 3�4)

As described above, Constraints 3�4 must be necessarily satis�ed by any fea-
sible solution of the room assignment problem for timeslot k. The next theorem
shows that they are also su�cient.

Theorem 1. A feasible solution of the timeslot assignment problem with Re-
quirement 3�4 is room-assignable if and only if the solution satis�es Constraints 3�
4.
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Proof. Any feasible solution of the timeslot assignment problem with Require-
ments 3�4 that is room-assignable must satisfy Constraints 3�4 given the de�-
nition of the constraints described above.

On the other hand, consider a feasible solution τ to the timeslot assignment
problem with Constraints 3�4 satis�ed. We show that this solution is room-
assignable for an arbitrary but �xed timeslot [sk, fk]. Let q = qk, the number
of distinct room sizes of the timeslot. For each i ∈ {0, ..., q − 1}, let S(i) be the
statement that all exams assigned to [sk, fk] by τ that have size larger than ri
can be assigned rooms in timeslot [sk, fk]. Note that all of the rooms assigned
for these exams must have size larger than ri.

Fix k ∈ [m] and for i ∈ {0, ..., q − 1}, let Ki = {E ∈ E>
ri : τ(E) = [sk, fk]}.

With i > 0 note that, Ki ⊆ Ki−1, and, as well that Ki−1 \Ki is precisely the set
of those exams that are assigned to the timeslot with size in the range r(i− 1, i]
(i.e., size larger than ri−1 but at most ri). Moreover,

|Ki| = |{tE ∈ TE>
ri

: tE is bound to k}|

since E ∈ Ki if and only if E ∈ E>
ri and τ(E) = [sk, fk], if and only if decision

variable tE ∈ TE>
ri
is bound to k.

Rephrased, S(i) is the statement that the exams of Ki can be assigned to
rooms in the timeslot. The following proves that S(0) is true by showing S(q−1)
is true and then inducting backwards to zero by proving that S(i) implies S(i−1)
for all i ∈ [q − 1].

S(q − 1) is true. The constraint global_cardinality_low_up(TE>
rq−1

, Frq−1)

ensures that |{tE ∈ TE>
rq−1

: tE is bound to k}| ≤ |R>

rq−1,k
|. Thus |Kq−1| ≤

|R>

rq−1,k
| and hence there are enough rooms of size more than rq−1, that is those

of size rq, so that each of the |Kq−1| exams can be assigned to a room of size at
most rq, one exam to a room, during the timeslot.

S(i) implies S(i−1). Suppose, for some i ∈ [q−1], S(i) is true. Thus the exams
in Ki can be assigned to rooms during the timeslot. None of these exams can be
assigned to rooms whose sizes are in the range r(i− 1, i] since they all have size
larger than ri. Assign each of these exams to their own room. There are then
|R>

ri−1,k
| − |Ki| remaining rooms without assigned exams for the timeslot that

have size larger than ri−1. The set of remaining exams to be assigned for the
timeslot that have size larger than ri−1 is Ki−1 \Ki. Moreover, the constraint
global_cardinality_low_up(TE>

ri−1
, Fri−1

) ensures that |Ki−1| ≤ |R>

ri−1,k
|

which in turn implies

|Ki−1 \Ki| = |Ki−1| − |Ki| ≤ |R>

ri−1,k
| − |Ki|.

Thus there are enough unassigned rooms of size larger than ri−1 (and hence size
at least ri) so the exams with sizes in (ri−1, ri] in Ki−1 can be assigned to their
own room. Thus S(i− 1) is true.

By induction, we have that S(0) is true and hence all of the exams assigned
to the timeslot under τ have been assigned a room during the timeslot. ⊓⊔
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From a given timeslot assignment τ satisfying these constraints, a greedy
algorithm can then be used to assign rooms of a given timeslot. This is done by
�rst ordering the rooms from largest to smallest in a list as well as ordering the
exams largest to smallest in a separate list. Then repeat the following: assign
the largest room to the largest exam, and delete each from their respective lists.

Typically, the number of rooms of a small size is much larger than the num-
ber of rooms of a larger size (e.g., in most universities there is only one gym).
Moreover, many small size rooms do not get assigned an exam for a given times-
lot. For these reasons, the room assignment problem is typically di�cult for the
larger sized exams. Thus in practice, not all minimum sizes need be considered
above to ensure a feasible room assignment.

CP of Requirement 5 (Time and Room Specific).
Requirement 5 is straightforward to implement. For the timeslot assignment part,
if E ∈ E and B ⊆ T , the requirement τ(E) ∈ B is implemented by reducing
the domain of tE to be {k : [sk, fk] ∈ B} using not equal constraints or other
constraint programming primitives.

CP of Requirement 6 (Overlapping Timeslots).
In order to extend Requirement 1 for overlapping timeslots, the among_low_up
global constraint is used (see [5, p. 494]). For eachB ∈ B∗, let VB = {k : [sk, fk] ∈
B}. Using an intersecting subset I ⊆ E of exams, the among_low_up(0, 1,TI, VB)
constraint is used to require that at most one variable from TI can take a value
from VB . This will force that at most one timeslot from any two timeslots that
overlap be chosen for each pair of exams from I. See Requirement 1 for the
discussion regarding which intersecting sets of exams to use.

Note that when the timeslots are pairwise disjoint, |B| = 1 and hence
|VB | = 1. For an intersecting subset I of exams, the constraint for this case,
among_low_up(0, 1,TI, VB), is logically equivalent to alldifferent(TI). On
the other hand, with overlapping timeslots, alldifferent(TI) is weaker logi-
cally than among_low_up(0, 1,TI, VB). Thus these alldifferent constraints
should not be removed given the possibility that their inclusion could provide
some additional propagative usefulness.

The room assignment restriction for Requirement 6 is discussed in Section 3.2.

CP of Requirement 7 (Room Task Limit).
We treat Requirement 7 in a similar way as we have for Requirements 3 and 4.
In fact, Requirement 7 is a generalization of those requirements. Let k ∈ [m],
q = qk, and j ∈ [0, q − 1]. The maximum number of concurrent exams of size
greater than rj that can be scheduled during timeslot [sk, fk] is given by

γ>

j,k =
∑

R∈R>
rj,k

γk(R).

Note if Requirements 3 and 4 are in force, then γk(R) = 1 for all R ∈ R>

rj ,k
, and

hence γ>

j,k =
∣∣∣R>

rj ,k

∣∣∣.
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12 S. Hamilton and D. Hare

For a positive integer u, let Eu = {E ∈ E : ε(E) = u} be the set of ex-
ams of size u. Consider the (non-multi)-set of exam sizes U = {ε(E) : E ∈ E}.
For each exam size u ∈ U and each k ∈ [m], introduce a CP variable nu,k

that is constrained to count the number of exams of size u assigned to times-
lot [sk, fk]. By de�ning F ′

u = {(k,nu,k) : k ∈ [m]}, the CP global constraint
global_cardinality(TEu

, F ′
u) (see [5, p. 1034]) ensures nu,k will equal the

desired count.
Like Requirements 3 and 4, we need to use a sequence of constraints in

order that a timeslot assignment with this requirement guarantees that there is
a corresponding feasible room assignment ρ. For each i ∈ [q] and each k ∈ [m],
use the standard global constraint representing the following sum of integer CP
linear terms that counts the number of exams of sizes in r(i − 1, i] that are
assigned to timeslot k:

n∗
i,k =

∑
u∈U

u∈r(i−1,i]

nu,k.

Moreover, for j ∈ [0, q − 1],

n>

j,k =

q∑
i=j+1

n∗
i,k

counts the number of exams of sizes larger than rj that are assigned to the
timeslot. Note that n∗

q,k = n>

q−1,k and if i < q, then n∗
i,k = n>

i−1,k − n>

i,k. The
CP constraints for Requirement 7 are then,

n>

j,k ≤ γ>

j,k for j ∈ [0, q − 1] and k ∈ [m]. (Constraints 7)

Constraints 7 must be necessarily satis�ed by any feasible solution of the room as-
signment problem for timeslot k. They need to be combined with the constraints
of Requirement 8 in order that a room with concurrent exams has enough space
for the assigned examinees. In order to implement the mq constraints of Con-
straints 7, at most m|U | new CP variables are required along with their de�ning
m|U | global constraints.

CP of Requirement 8 (Room Multitasking Size).
Let timeslot [sk, fk] be �xed and q = qk in the following discussion. Continuing
with the description of the CP implementation of Requirement 7, for a given
room size ri, a necessary (linear) constraint for feasibility when concurrent exams
are allowed is: ∑

u∈U
u>ri

unu,k ≤
∑

R∈R>
ri,k

σk(R).

The left hand side represents the sum of the sizes of those exams of size larger
than ri scheduled in the timeslot, whereas the right hand side represents the sum
of the sizes of the rooms larger than ri. This constraint is not su�cient as it is
possible that a collection of exams satis�es the constraint by collectively having
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Exam Scheduling With Hardship Minimization 13

enough room space but without a way to partition the rooms for the exams.
For example, four exams of size 60 cannot �t into three rooms of size 80 even
though the constraint is satis�ed. To be precise, for each potential room size ri
and exam size u, let πk(ri, u) be the maximum number of exams of size u that
can be concurrent in rooms of size ri during the timeslot:

πk(ri, u) =
∑
R∈R

σk(R)=ri

⌊ri
u

⌋
.

The previous example provides the constraint that at most πk(80, 60) = 3 exams
of size 60 can be hosted by rooms of size 80. Note that πk(ri, 1) is just the sum
of the sizes of rooms of size ri that can be assigned exams during the timeslot.

Let u▽
q be the minimum size of the exams of E>

rq−1
.4 The �rst necessary

condition of Requirement 8 for a feasible solution of the timeslot assignment
problem to be feasible for the room assignment problem requires that the number
of exams assigned to the timeslot that are forced to be assigned to the largest
size rooms must not exceed the rooms' collective capacity:

n∗
q,k ≤ πk(rq, u

▽
q ).

Continuing now with smaller sized rooms, without any assumption of room
assignments for exams, one can at least represent the cumulative remaining space
(residual capacity) of the size of rooms of a given minimum room and exam size
for use in other necessary conditions. To this end, for i ∈ [q], we de�ne the CP
variable ci,k as:

ci,k =
∑

R∈R>
ri−1,k

σk(R)−
∑
u∈U

u>ri−1

unu,k.

Consider all the exams of E>
rq−2

\ E>
rq−1

= {E ∈ E : ε(E) ∈ (rq−2, rq−1]}
and u▽

q−1 to be the minimum size of these exams. Exams from this set must be
assigned to rooms of size rq−1 or of size rq. None of these exams of size larger
than rq−1 can be assigned to rooms of size rq−1 so they must be assigned to
rooms of size rq. There are thus at most πk(rq−1, u

▽
q−1) of these exams assigned

to rooms of size rq−1. The residual capacity for exams of size larger than rq−1 in
rooms of size rq is given by cq,k. Thus these rooms can be assigned to at most⌊
cq,k
u▽
q−1

⌋
of exams of size at most rq−1. Therefore, a necessary condition for the

number of exams of size in the range r(q − 2, q − 1] assigned to the timeslot is:

n∗
q−1,k ≤ πk(rq−1, u

▽
q−1) +

⌊
cq,k
u▽
q−1

⌋
.

4 We may suppose the E>
rq−1

is nonempty since otherwise we will just skip this step and
not produce a constraint for i = q−1. This is also true for the remaining discussion.
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14 S. Hamilton and D. Hare

For i ∈ [q−2], let u▽
i be the minimum size of the exams of E>

ri−1
\E>

ri . Now for
such a �xed i, the exams from E>

ri−1
\E>

ri must be assigned to rooms whose sizes
are from ri, . . . , rq. No exams of size larger than ri can be assigned in rooms of
size at most ri. Using the same reasoning as in the last paragraph, rooms of size

ri and of size rq can be assigned at most πk(ri, u
▽
i )+

⌊
cq,k
u▽
i

⌋
of these exams. For

j = [i+2, q− 1], we wish to determine the residual capacity of the rooms of size
rj for exams whose sizes are in the range r(j − 1, j]. Unfortunately, this number
depends on a feasible room assignment. We will thus determine an upper bound,
de�ned by c′j,k in the next paragraph, of the residual capacity of rooms of size
rj from assigning exams of sizes in the range r(j − 1, j] for any feasible room
assignment. Given this upper bound, the rooms of size rj can be assigned at

most

⌊
c′j,k
u▽
i

⌋
exams during the timeslot. Thus the number of exams of sizes in

the range r(i− 1, i] assigned to the timeslot must satisfy:

n∗
i,k ≤ πk(ri, u

▽
i ) +

q∑
j=i+1

⌊
c′j,k
u▽
i

⌋
. (1)

We now turn to determining an expression for c′j,k. Since exams of sizes in the
range (rq−1, rq] must be assigned to rooms of size rq, c

′
q,k = cq,k. For j ∈ [q− 1],

we determine c′j,k by �rst considering an upper bound, n′
j,k, of the maximum

number of exams whose sizes are in the range r(j − 1, j] that can be assigned to
rooms of sizes larger than rj . De�ne

n′
j,k = min

{
n∗

j,k,

⌊
cj+1,k

u▽
j

⌋}
.

There are only n∗
j,k exams whose sizes are in the range r(j − 1, j] and assigned

to the timeslot, and so those assigned to rooms larger than rj cannot exceed

this number. On the other hand, the term

⌊
cj+1,k

u▽
j

⌋
is an upper bound for the

maximum number of exams of sizes in the range r(j − 1, j] that can be assigned
to rooms of sizes larger than rj considering the residual capacity of the exams
of size larger than rj that are assigned to the timeslot. Thus n′

j,k is an upper
bound to the stated maximum.

De�ne now n′′
j,k = n∗

j,k − n′
j,k. Then n′′

j,k is a lower bound on the fewest
number of exams of sizes in the range r(j − 1, j] assigned to rooms of size rj .
Thus the remaining capacity of rooms of size rj from exams of sizes in the range
r(j − 1, j] is at most c′j,k = πk(rj , 1)− u▽

j n
′′
j,k.

For i ∈ [q], and k ∈ [m], the constraint given in (1) can be considered the most
general form of a constraint of the CP implementation of Requirement 8 if we
allow the empty summand to be disregarded when i = q (i.e., set the summand
to 0). As well, if for any i, E>

ri \ E>
ri+1

= ∅, then the constraint is disregarded
altogether for all k ∈ [m]. We label the entire collection of these constraints that
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Exam Scheduling With Hardship Minimization 15

includes the constraint given in (1) for each i and each k as Constraints 8. Our
implementation of the mq constraints of Constraints 8 required 2mq new CP
variables along with their de�ning 2mq constraints.5

Constraints 8 provide necessary constraints for a feasible solution of the
timeslot assignment problem to be room-assignable, however they may not be
su�cient. One of the issues that makes the constraints insu�cient is that the
terms c′i,k depend on terms ci,k that represent the residual capacity of the rooms
of size at least ri, and are thus cumulative. It is possible (as provided in the ex-
ample) that they cannot be partitioned into the number of parts provided by
the constraints in a way that ensures exams of the size being considered can be
assigned to these rooms. Another issue is that the size of the parts for each con-
straint, u▽

i , does not guarantee there is enough space for the exams in E>
ri−1

\E>
ri

with sizes larger than u▽
i . To �x these issues, one can tighten the constraints but

in doing so risk infeasibility of the timeslot assignment problem or, at best, risk
removing feasible solutions to both problems. The �rst potential issue described
is nontrivial to overcome. It turned out, however, to not be an issue for our target
problems. The second issue can be �xed by replacing u▽

i in the expressions with
u△
i , the maximum size of the exams of E>

ri−1
\ E>

ri . If this leads to infeasibility,

any number between u▽
i and u△

i could be used (e.g., the average of the size of
the exams). In practice, we used u▽

i and achieved feasible timeslot assignment
solutions that were also room-assignable.

We refer to Constraints 7�8 as the room-cuts as they provide redundant
constraints for the number of tasks and sizes of the rooms in any solution to an
exam scheduling problem.

CP of Requirement 9 (Coupled Exams).
For Requirement 9.1, to require exams E and E′ to have the same timeslot
(τ(E) = τ(E′)), a CP equality constraint for their corresponding decision vari-
ables tE and tE′ is speci�ed. The independent Requirement 9.2, requires that
E and E′ have the same room (ρ(E) = ρ(E′)). As there is no corresponding
decision variable in the timeslot assignment model for the room assignments, it
is possible that if Requirement 9.1 is not also speci�ed, then the timeslot assign-
ment found may not allow for a feasible room assignment. On the other hand, a
more usual requirement would be that both Requirement 9.1 and 9.2 are spec-
i�ed for the given pair of exams. In this case, the exams themselves could be
considered as a single exam before the problem is speci�ed (i.e., E ∪E′ replaces
E and E′). Requirement 7 may then need to be adjusted as the two exams are
now counted as one.

CP of Requirement 10 (Hardships).
Given a subset D of exams, we wish to measure the spread of the timeslot
assignments of exams from D. Let the start and �nish times of the timeslots

5 Some of the intermediary variables described in this section simply store expressions
and are thus not counted. The new variables counted here are the ci,k's and the
n′

j,k's. It may be possible to optimize this further.
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16 S. Hamilton and D. Hare

be collected in
...
s = (s1, . . . , sm) and

...
f = (f1, . . . , fm) respectively. For each

exam E ∈ E, we de�ne a new constraint programming variable sE via the global
constraint element(tE ,

...
s , sE) (see [5, p. 958]) which ensures that sE is bound

to sk if and only if tE is bound to k (i.e., sE is stE ). Moreover, for each exam
E ∈ E, using element(tE ,

...
f ,fE) de�nes fE so that fE is bound to fk if and

only if tE is bound to k (i.e., fE is ftE ).
A new constraint programming decision variable s▽

D is de�ned via the global
constraint minimum

(
s▽
D, {sE : E ∈ D}

)
(see [5, p. 1378]) that represents the min-

imum start time of the intervals indexed by the variables assigned to exams
from D. A similar decision variable f△

D is de�ned through the global constraint
maximum

(
f△
D, {fE : E ∈ D}

)
that represents the maximum �nishing time of the

intervals indexed by the variables assigned to exams from D (see [5, p. 1348]).
The constraint programming variable lD, representing the length of the spread
of the timeslot assignments of exams from D, is thus the di�erence of decision
variables f△

D − s▽
D. Moreover, when a solution τ is found from binding decision

variables t, f , s, fD, sD and lD, the variable lD will be bound to ℓ(IB) where
B = {τ(E) : E ∈ D}. Note that the domain of lD is a subset of [0, ℓ(IT )].

In order to measure the number of times persons are in at least w exams that
are assigned by τ to be within any d time units of the schedule (i.e., |Hw,d|), we
consider a subset of exams D such that |D| = w and such that ∩D ̸= ∅. The
number of persons writing all of the w exams in D is | ∩ D|. Thus if lD ≤ d,
then these w exams will be written within d time units and hence will contribute
| ∩D| to |Hw,d|, but 0 otherwise.

Since time is discretized, we de�ne d+ to be the next time unit after d. We
use a combination of global constraints to map the decision variable lD to d if
lD ≤ d, and to d+ otherwise. The constraint programming variable iD,d de�ned
by maximum{d, minimum{lD, d+}} encodes this understanding since if lD ≤ d,
then minimum{lD, d+} will have the value of lD and hence maximum{d, lD} will
be d. On the other hand, if lD > d, then lD ≥ d+ and so minimum{lD, d+} will be
d+ and hence maximum{d, d+} will also be d+. Let

...
d be a (d+1)-tuple with the

�rst d values as | ∩D| and the last value as 0. The new constraint programming
variable hD,d de�ned by the global constraint element

(
iD,d,

...
d , hD,d

)
will be

equal to | ∩D| if lD ≤ d, and 0 otherwise.
Finally, |Hw,d| is represented by the CP variable hw,d that is de�ned by the

standard global constraint representing the sum of integer CP variables:∑
D⊆E
|D|=w

hD,d.

Note that this sum need only be taken over those D ⊆ E with |D| = w that
have ∩D ̸= ∅ since hD,d is zero otherwise.

Note also that this sum could have an exponential number of terms if w ≈
1
2 |E|. This, however, does not happen in practice since for a subset of exams D
of size w to have non-empty intersection means that some person is taking w
exams and so typically this number is at most seven. Moreover, w is usually
three as in Example 1 and restricting the number of this type for a variety of
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Exam Scheduling With Hardship Minimization 17

d's will also restrict the hardships with w > 3 for larger time widths. Thus there
are usually less than |E|3 terms in the sum. As well, the number of d's used is
conventionally small given the small number of exams possible in a day and the
fact that �hardship� loses its meaning with larger d's.

Adding a CP constraint that sets hw,d to 0 for some w and d will ensure that
no (w, d)-hardships of τ will occur in a feasible solution. On the other hand, the
variables hw,d can be weighted and added to a minimizing objective function if
hardships are necessary for a feasible solution to be found.

Many exam scheduling problems have hardship constraints that involve each
day of the schedule. Two common examples are back-to-back exam hardships
and 2-in-1-day exam hardships. When such constraints are required and the
timeslots of the problem have a simple and regular structure, these hardships can
be implemented in a more straightforward way than the above, as the following
example illustrates. By adding the 8:30 a.m. and 7:00 p.m. timeslots to Sunday
and setting the temporal room sizes to zero for these timeslots, the index of a
timeslot in Example 1 can be used to determine the day index of the timeslot.
Suppose E1, E2 ∈ E are such that E1∩E2 ̸= ∅. Let D = {E1, E2} and de�ne the
boolean CP decision variable h′

D,d to represent the truth value of the following
logical expression that uses the exams' corresponding timeslot variables:

(tE1
− 1)/4 = (tE2

− 1)/4 and |tE1
− tE2

| ≤ d.

The expression uses the integer division and absolute value arithmetic functions
of CP variables that are found in most CP solvers as well as the use of the truth
value of a constraint arithmetically. Since there are four timeslots per day, h′

D,d

indicates if E1 and E2 are assigned the same day index, and at the same time
if they are within d timeslots from each other. Thus a back-to-back hardship
occurs when h′

D,1 is true, while a 2-in-1-day hardship occurs when h′
D,3 is true.

For d at least one and less than the number of timeslots in a day, if h′
D,d is

true, then we say a day d-hardship has occurred. Given p ∈ P , the number of
day d-hardships occurring for person p can be represented by a CP variable dp,d

de�ned by:

dp,d =
∑

D⊆E(p)
|D|=2

h′
D,d.

The total number of day d-hardships is thus dd =
∑
p∈P

dp,d which can be min-

imized or constrained. It may be of interest as well to minimize or constrain
d△
d = max

p∈P
dp,d so as to load balance the day d-hardships between all exam

writers. See Section 4 for some examples of the use of these constraints.

3.2 Room Assignment Subproblem

The room assignment subproblem is relatively straightforward compared to the
timeslot assignment subproblem. This is especially the case when the timeslots
are not allowed to overlap, and we will make this assumption in what follows.
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18 S. Hamilton and D. Hare

The necessary modi�cations will be discussed in the CP of Requirement 6 section
if timeslots are allowed to overlap.

For each of the timeslots [sk, fk], k ∈ [m], the room assignment subproblem
�nds room assignment ρk using the exams assigned to [sk, fk] by τ from a feasi-
ble solution of the timeslot assignment subproblem. In what follows, a timeslot
[sk, fk] will be considered �xed and let Ek = τ−1([sk, fk]) be the set of exams
assigned to the timeslot. Moreover, let the rooms of R>

0,k be labeled R1, . . . , Rv.

Primary Decision Variables For each E ∈ Ek, we de�ne a CP integer-valued
decision variable rE whose domain is the set of indicies of the rooms, [v], with
the understanding that if rE is bound to i, then ρk(E) = Ri. For any subset
D ⊆ Ek of exams, we let RD = {rE : E ∈ D} be the corresponding set of
decision variables.

CP of Requirement1�2 (Person Single-Tasking and Exam Duration).
Requirements 1�2 are satis�ed by a feasible τ and thus have no corresponding
constraints in this section. We now focus on the remaining ones.

CP of Requirement 3 (Room Single-Tasking).
Requirement 3 forces every exam to be assigned its own room. This can be
achieved by imposing the global constraint alldifferent(REk

, [v]).

CP of Requirement 4 (Room Size).
Requirement 4 ensures that the room assigned to an exam E ∈ Ek is the appro-
priate size. This is achieved by setting the domain of E equal to {i ∈ [v] : Ri ∈
R>

ε(E),k}.

CP of Requirement 5 (Time and Room Specific).
Requirement 5 is also straightforward to implement for the room assignment
part. If E ∈ Ek and Q ⊆ R, the requirement ρ(E) ∈ Q is implemented by
reducing the domain of rE to be {i : Ri ∈ Q} by requiring the CP variable to
be not equal to each value in {i : Ri ∈ R \ Q}, or by other domain-reducing
constraint programming primitives.

CP of Requirement 6 (Overlapping Timeslots).
If timeslots are allowed to overlap, then the replacement of Requirement 3 with
this requirement for the room assignment problem ensures that a room cannot
be assigned to an exam from each of two overlapping distinct timeslots. In order
to model this, several room assignment models have to be solved as a single
model, or the extension to the timeslot assignment implementation should be
used (see Section 3.3). To simplify the discussion, we will assume that the single
model consists of all rE for all exams E ∈ E1 ∪ · · · ∪ Em = E. The constraints of
this requirement then are rE ̸= rE′ , for E ∈ Ek and E′ ∈ Ek′ of all k, k′ ∈ [m],
k < k′, with [sk, fk] ∩ [sk′ , fk′ ] ̸= ∅.
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Exam Scheduling With Hardship Minimization 19

CP of Requirement 7 (Room Task Limit).
The requirement is encoded in the set of triples Gk = {(i, 0, γk(Ri)) : i ∈ [v]} for
the global constraint global_cardinality_low_up(REk

, Gk) (see [5, p. 1040]).
This constraint ensures that, for each i ∈ [v], the number of decision variables
rE with E ∈ Ek that are bound to i is between 0 and γk(Ri). In other words,
the number of exams assigned to room Ri is at most γk(Ri) during the timeslot.
Note that Requirement 7 has the limitation that no other timeslots overlap with
[sk, fk] and thus cannot be assigned to rooms during [sk, fk].

CP of Requirement 8 (Room Multitasking Size).
For each E ∈ Ek and i ∈ [v], let bE,i be a CP decision variable that is one if
the constraint rE = i is true and zero otherwise. This requirement can then be
modeled by the following constraints:∑

E∈Ek

ε(E)bE,i ≤ σk(Ri) for each i ∈ [v].

CP of Requirement 9 (Coupled Exams).
Requirement 9.1 is completely satis�ed by a feasible solution to the timeslot
assignment problem. Requirement 9.2 can be modeled for exams E, E′, using
the constraint rE = rE′ .

3.3 Extending the Timeslot Assignment Subproblem

Depending on the size of the input data (i.e., the sizes of the sets T , E and R),
it may be possible to solve the timeslot assignment problem and all of the room
assignment problems simultaneously through the use of the global constraint
bin_packing_capa (see [5, p. 600]). A bin packing constraint requires items
to be packed (i.e., assigned) into bins so that all items get a bin and the sum
of the weights of the items of a bin does not exceed the capacity of bin. The
correspondence between the exam scheduling problem and a bin packing con-
straint has the exams as items, the rooms as bins, and the number of examinees
as the weight of an item. Since the assignment of an exam to a room depends
on a timeslot, this uni�ed model speci�es a bin packing constraint for each of
the timeslots. To get around the requirement of the bin packing constraint that
each item must be packed into a bin, a virtual room is added to each of the
constraint's bins with a new unique value, v∗, for the room's index. Additional
constraints will ensure that an exam that is scheduled in timeslot k is not sched-
uled in the virtual room in timeslot k, and vice versa. The virtual room has
unlimited capacity in all timeslots so as to allow any combination of exams to
be packed into it in any particular timeslot thereby not restricting the exams to
use actual rooms if they are not assigned to the timeslot.

To be more precise, the model includes, for each exam E ∈ E, the previously
described timeslot assignment primary decision variable tE , as well as room
assignment primary decision variables rE,k, where k ∈ [m] and rE,k is a modi�ed
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20 S. Hamilton and D. Hare

room assignment primary decision variable rE for timeslot k. Each rE,k has its
domain extended to include v∗, the index of the virtual room.

If an exam E is assigned timeslot k, then the exam is not assigned the virtual
room in timeslot k, and vice versa. This is modeled through the set of constraints

tE = k if and only if rE,k ̸= v∗, for all k ∈ [m], (2)

which are easily expressed in CP solvers. We store each pair of the index of a
bin (i.e., room) along with its capacity (i.e., room size) in the set

βk =
{(

1, σk(R1)
)
, . . . ,

(
v, σk(Rv)

)}
∪ {(v∗,∞)}.

Moreover, each pair of a bin (i.e., room) assignment decision variable for item
(i.e., exam) E at timeslot k along with the item's weight (i.e., number of ex-
aminees of E) is stored in the set ιk = {(rE,k, ε(E)) : E ∈ E}. For k ∈ [m],
the constraint bin_packing_capa(βk, ιk) then ensures that all the exams get
assigned to rooms in timeslot k without exceeding any room's size. Combined
with (2), an exam gets assigned to an actual room in timeslot k if and only if
the exam is assigned to timeslot k.

The collection of all these m global constraints along with the m|E| con-
straints from (2) thus implement Requirement 8.

The rE,k variables can be reused to implement Requirement 7 in the global
constraint of its CP implementation in Section 3.2. Each of the m timeslots
requires a single global constraint and has at most |R| new CP counter variables.

We refer to this CP implementation of Requirements 7�8 as the room-packings
constraints.

3.4 Remarks on Usage of Implementations

In this section, we discuss several possible scenarios regarding the use of the
CP implementations of the requirements of the exam scheduling problem. A few
factors go into deciding which scenario to use. The main factor is the sizes of
the inputs to the problem, speci�cally the number of:

1. timeslots, m,
2. exams, |E|,
3. di�erent sizes of exams, |U |,
4. rooms, |R|, and
5. maximum di�erent sizes of rooms, q = max

k∈[m]
qk.

The main consideration of the implementation is whether rooms are prohibited
from hosting concurrent exams (Requirement 3) or not (Requirement 8). If the
rooms are prohibited from hosting concurrent exams, then Theorem 1 ensures
that any feasible solution from the timeslot assignment CP implementation will
be room-assignable. Thus the room-cuts and room-packings are not required.

When rooms are allowed to host concurrent exams, room-cuts or room-
packings must be speci�ed in the timeslot assignment implementation. An anal-
ysis of the sizes of the inputs to the problem might be required to determine
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whether to use room-cuts, room-packings or both. The following table lists the
number of variables, non-global constraints, and global constraints required by
each implementation option. The other constraints of the timeslot assignment
implementation are not considered.

Table 2. Implementation Metrics of Model Options for Concurrent Exams

Model Option
Timeslot Assignment Implementation

# Variables # Non-Global # Global

room-cuts (|U |+ 2q)m (3q)m |U |m

room-packings (|E|+ |R|)m |E|m 2m

To compare di�erent cells of Table 2, observe that |U | ≤ |E| and q ≤ |R|. If
room-cuts are used alone, then the room assignment implementation must be
run for each timeslot. Also, the room-cuts are necessary but not su�cient for a
feasible solution of the timeslot assignment implementation, without the room-
packings, to be room-assignable. The real-world data sets we have encountered
(see next section), however, have shown to always provide room assignable so-
lutions. Moreover, if there are many rooms of small sizes to choose from, only
larger rooms need be used in the room-cuts so that the number of distinct room
sizes can be reduced to be much smaller than 1

2 |R| and
1
3 |E|.

4 Experiments

The driving purpose of the models presented here was to produce workable
schedules for the Okanagan campus of University of British Columbia (UBC) for
the 2021/2022 academic year. Other than producing the �nal exam schedules,
but within the context of using this real data, our experiments are designed to
compare the room-packings model with the room-cuts model. A follow up study
will provide a more complete analysis.

The data provided by UBC includes anonymized student enrollment data,
instructor requests, and room sizes and availabilities. The exam scheduling prob-
lem at this institution includes a few exceptional scenarios that require special
handling, as listed below.

Cross-listed and Common Exams: A course that has di�erent titles because it
is shared between di�erent programs is called cross-listed. Cross-listed courses
are required to have their exams scheduled at the same time and location. For
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such courses, the data of their exams are merged during a preprocessing stage
so that the merged exam is the union of the cross-listed exams. The merged
exam is treated as a single exam both in the timeslot and room assignment
models. Though this scenario could be handled by implementing Requirement
9, we chose to merge the exams so that when implementing Requirements 7 and
8 in the timeslot assignment model, the cumulative size of the grouped exams is
accounted for.

A course that has multiple sections but a common exam is treated similarly.

Double-Seating Requirement: Every room's e�ective size is half of its true ca-
pacity, excluding the gym. We call this the double-seating requirement. The re-
quirement is implemented through appropriate σ input data.

Gym: The gym is a special room. First of all, it is the only room that does not
require double-seating (its e�ective size is the true capacity of the room). Fur-
thermore, while most rooms require single-tasking, the gym uses multi-tasking,
allowing at most three exams to take place concurrently. The use of the gym is
also minimized, since it is a large room and it is not desirable to have multiple
exams take place in the same location. This is handled by creating a variable to
track if an exam is assigned the gym, and minimizing the sum of these variables
in the objective function of the room assignment model.

UBC's examination period follows the structure shown in Example 1. We are
considering two datasets: the (Winter) Term 1 and 2 data from the 2021/2022
academic year. Statistics about these datasets are listed in Table 3.

Our primary focus with the experiments is to test the e�ectiveness of the
proposed models while meeting the university's 3-in-27-hours hardship require-
ment (see Example 1). To do so, we consider a room-packings model and a
room-cuts model for each data set. The room-packings model implements Re-
quirements 7�8 in the timeslot assignment model as described in Section 3.3
(the room-packings constraints). The room-cuts model uses the CP implemen-
tation of Requirements 7�8 for the timeslot assignment model as explained in
Section 3.1 (the room-cuts). The minimum size of the exams of E>

ri−1
\ E>

ri , u
▽
i ,

was used for these constraints.
For both approaches the models were con�gured as follows. The constraints

included in the timeslot assignment model are listed in Table 4. We consider
two variations of objective functions. The �rst objective function only minimizes
the number of times students have back-to-back exams, that is, we minimize
d1. The second objective function minimizes a weighted sum, which includes the
number of back-to-back and 2-in-1-day hardships, where the former hardship has
a higher priority/weight. The latter metric will be referred to as 2-in-1s. When
searching for solutions, the exam timeslot assignment variables, tE , are branched
on �rst, using CP Optimizer's default settings. Then the default settings of CP
Optimizer's search engine choose the remaining variables and values to search
on.
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Table 3. Data properties for the UBC 2021/2022 data sets.

Data Property Term 1 Term 2

Number of exams 358 378
Number of exams requiring a room 217 275
Number of exams representing cross-listed sections 23 33
Number of exams representing common exams 41 41
Number of students enrolled in exams 10031 9369
Average number of exams per student 3.4 3.4
Average number of students per exam 96.4 84.9
Number of instructors 256 269
Number of regular roomsa 32 32
Number of gyms 1 1
Number of computer rooms 8 8
Number of restricted rooms 4 6
Number of triples of exams with students in common 15848 15457
Number of pairs of exams with students in common 9345 9033
Concurrent exam periods constraints (Req. 9.1) 20 19
Di�erent period constraints 0 0
Concurrent exam rooms constraints (Req. 9.2) 0b 0
Di�erent room constraints 0 0
Time speci�c constraints (Req. 5) 9 8
Room speci�c constraints (Req. 5) 7 25

a All rooms are available for all timeslots.
b All sets of exams with this requirement were amalgamated into a single exam in
preprocessing.

Table 5 lists the constraints for the room assignment model. A lexicographic
objective function is used to �rst minimize the number of exams assigned to
the gym and then minimize the excess space in the room. The room assignment
model takes in the solution from the timeslot assignment model and assigns the
exams to rooms. The room assignment model is run once for each timeslot and
uses the default search settings in CP Optimizer. The time taken to solve the
room assignment problem given a feasible timeslot assignment is negligible, as
�nding the room assignment is trivial for the CP solver.

All experiments were conducted on an Intel i9-10900K @ 3.70GHz (10 cores�
20 threads/workers) with 32.0 GB memory using IBM ILOG CPLEX Optimiza-
tion Studio 20.1.0.0, with the timeslot assignment model having a time limit of
24 hours. The search was always terminated by this limit and the solutions never
reached optimality.

Table 6 shows the results for minimizing only back-to-backs. In this scenario
the room-cuts outperform the room-packings model for both terms. However,
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Table 4. List of constraints included in the timeslot assignment model for the experi-
ments.

Requirement Description Constraint
Type

1 No student/instructor can have
more than one exam per timeslot

Hard

2 Exam duration requirement
is met implicitly by input data

Hard

5 Set domain for the exam timeslot
based on instructor requests

Hard

7, 8 Room-cuts (necessary condition
to satisfy room constraints)

Optional,
Hard

7, 8 Room-packings Optional,
Hard

9 Cross-listed or common exams required
to be assigned the same timeslot

Hard

10 Zero 3-in-27-hours hardships (h3,54 = 0) Hard

10 Maximum 2-in-1-day hardships
per student is 1 (d△

3 ≤ 1)
Hard

10 Minimize 2-in-1-day hardships (d3) Optional,
Optimized

10 Minimize back-to-back hardships (d1) Optional,
Optimized

there is a trade-o�: minimizing this metric comes at a cost of increasing the 2-in-
1s (even though a back-to-back counts as a 2-in-1-day). For example, in Term 2,
the room-cuts approach results in 4 back-to-backs but 1486 2-in-1s, while the
room-packings approach leads to 17 back-to-backs but only 1275 2-in-1s. This
observation led us to explore a weighted objective for our comparisons.

Table 7 shows the results from minimizing the weighted objective, where
back-to-backs were given a 20-to-1 priority over 2-in-1s. For these experiments
the room-packings approach leads to less back-to-backs exams for both terms.
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Table 5. List of constraints included in the room assignment model for the experi-
ments.

Requirement Description Constraint
Type

3, 7 Gym hosts at most three exams;
all other rooms host at most one exam

Hard

4, 8 Number of students writing exams scheduled in
a room is at most the e�ective room sizea

Hard

5 Set domain for the exam room
based on instructor requests

Hard

a The constraint may be softened for exams with speci�c room requests.

Table 6. Results from experiments minimizing the number of back-to-back (d1) hard-
ships for the UBC 2021/2022 Term 1 and Term 2 data sets. All experiments required
h3,54 = 0 and d△

3 ≤ 1.

Model Option
back-to-backs

Term 1 Term 2

room-cuts 38 4

room-packings 58 17

On the other hand, room-cuts have a lower number of 2-in-1s for Term 1. We can
see from the overall objective that the room-packings approach performs better
for the weighted objective.

One downside to the 2021/2022 data sets is that they were produced during
the COVID-19 pandemic. This resulted in courses having the option of holding
their exams online in Term 1 or Term 2 if the course's instructor required special
accommodations. Therefore not all exams needed rooms, and so that the exam
schedule had more �exibility due to having less constraints. To further push the
model and gauge how well it may perform in future years without online courses,
we modi�ed the data sets so that all exams were written in-person and needed
to be scheduled in a room on campus. The resulting data sets had 65% and 35%
more exams needing rooms for Term 1 and Term 2, respectively. The results
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Table 7. Results from experiments minimizing a weighted function of the number of
back-to-back (d1) and 2-in-1-day (d3) hardships for the UBC 2021/2022 Term 1 and
Term 2 data sets. All experiments required h3,54 = 0 and d△

3 ≤ 1.

Model Option
back-to-backs 2-in-1s Objective Value

Term 1 Term 2 Term 1 Term 2 Term 1 Term 2

room-cuts 146 91 735 728 3655 2548

room-packings 115 67 771 646 3071 1986

for these runs with these are shown in Table 8. For Term 1, these results agree
with those seen in Table 7. For Term 2, we get a surprising outcome. Using
the room-cuts approach here led to a better objective in terms of both back-
to-backs and 2-in-1s compared with the room-packings approach. Furthermore,
these metrics were also better than the results from the original data set, for both
the room-cuts and room-packings approaches. When comparing the statistics for
the original and modi�ed versions of the Term 2 data, it is not obvious why this
is the case. However, due to the nature of these experiments and because these
results are not proven to be optimal, it is easily possible for this scenario to occur
due to di�erences in the search trees explored by CP Optimizer.

Table 8. Results from experiments minimizing a weighted function of the number of
back-to-back (d1) and 2-in-1-day (d3) hardships for the augmented UBC 2021/2022
Term 1 and Term 2 data sets. All experiments required h3,54 = 0 and d△

3 ≤ 1.

Model Option
back-to-backs 2-in-1s Objective Value

Term 1 Term 2 Term 1 Term 2 Term 1 Term 2

room-cuts 197 58 827 745 4767 1905

room-packings 172 117 1021 723 4461 3063

These experiments serve to illustrate the robustness of our model for moderate-
sized universities, as well as the di�culty in choosing an approach for ensuring
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room-assignable solutions in the exam scheduling problem. Our results illustrate
that even for the same data sets, the choice between using room-cuts versus
room-packings constraints varies depending on the objective function used. Fur-
thermore, there are several other considerations to take into account. First, the
selected CP solver may not have built-in bin-packing constraints available and
it may be too onerous to build them from scratch. In this case using room-cuts
would be the only choice. If the university is large, then exploring room-cuts
may be necessary to reduce the number of variables and constraints in the CP
model. If there are several room restrictions that cannot be softened and should
not be ignored in the timeslot assignment model, then the room-packings ap-
proach would be most appropriate. Altogether, both approaches presented here
are valuable tools that provide modeling options for researchers and practitioners
in various scenarios.

Future work will be done to establish lower bounds on the objective functions
to narrow the optimality gap. Furthermore, more tests will be conducted to study
each model's performance on various benchmark and real-world data sets.

5 Conclusion

In this paper we presented a generic speci�cation of the exam scheduling prob-
lem that encompasses a large variety of institutional requests. We also described
in detail how this speci�cation can be implemented using constraint program-
ming. In particular, we introduced a general de�nition and implementation of
student hardships, which we illustrated with three real-world examples: the 3-in-
27-hours, back-to-back, and 2-in-1-day hardships. As well, we introduced a novel
set of cuts that establish necessary conditions for a timeslot assignment solution
to emit feasible room assignments. These room-cuts allow the exam scheduling
problem to be decoupled into separate timeslot and room assignment phases.

The CP implementation of these models demonstrated its capabilities in the
production of the 2021/2022 �nal exam schedules at the Okanagan campus of
the University of British Columbia. Moreover, our testing compared the room-
cuts model with the room-packings model using variations of the most recent
data from UBC. The room-cuts implemented in the timeslot assignment model
ensured feasibility in the room assignment model for all tests conducted. On
the other hand, the room-packings model uses bin-packing constraints to join
the timeslot and room assignment subproblems ensuring such feasibility intrin-
sically. Furthermore, the room-cuts model achieved competitive solutions when
compared with the room-packings model. In conclusion, we have illustrated that
both approaches are robust and can tackle the exam scheduling problem in-
stances explored in this work, thus advancing the theory and tools for researchers
and practitioners alike.
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