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1 Introduction

Traditional research on combinatorial optimization problems, such as schedul-
ing, focuses on computational efficiency. The typical goal is to compute better
solutions within given time constraints, or to compute optimal solutions faster.
Over the years, the field of Operational Research (OR), and more recently also
the field of Artificial Intelligence (AI) put numerous techniques forward that
can solve combinatorial optimization problems in a highly efficient manner.
The benchmarks used in this research are often artificially generated. Moreover
they typically consist of well-defined problem definitions over consistent prob-
lem instances, i.e. there are no contradicting hard constraints and instances
are not constrained to the point that there is no longer a solution. This has
lead to a mismatch between academic result and real-life applications, in which
problems are most often ill-defined.

To overcome this gap, both research fields have put a substantial effort in
solving optimization problems for real-world benchmarks. E.g., the biannual
international timetabling competition gathers a large number of real-world
applications for its tracks [7] and more and more conferences in the field include
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talks on real-world applications or even have dedicated tracks for them, such
as PATAT or ICAPS.

In this work we aim to identify if and, more importantly, why a problem
specification is ill-defined. If we can explain in a comprehensible manner why
a conflict occurs, then the inconsistency can be reported to the user. The user
can then use this information to construct a consistent specification that can
be handled by the system. We focus on inconsistencies in the problem instance,
rather than in the problem definition itself. Existing systems typically try to
detect or prevent such inconsistencies in a rather ad hoc manner, e.g., by
means of a user-friendly interface or by performing input data checks. These
techniques are only usable for shallow inconsistencies such as typing errors
and miscounts. For the detection of more profound conflicts, more complex
inference is required.

In this paper, we propose a knowledge-based approach for detecting and
explaining conflicts in instances of the School Timetabling Problem (STP) in
the context of Belgian secondary schools. We do this in an effort to tackle
the problem from a Knowledge Representation and Reasoning (KRR) point
of view as opposed to the more traditional research from the field of OR. We
believe that the declarative aspect of our proposed system will allow conflicts
to be explained in a more comprehensible manner.

An additional contribution will be the compilation of a data set with real-
istic conflicts based on actual STP instances, which will also be used for the
validation of our work.

2 The IDP knowledge base system

In order to explain inconsistencies in a comprehensible manner, we start from
a purely declarative knowledge base. In this approach, a problem specification
consists of a set of hard and soft constraints much like in OR techniques. How-
ever, we focus on writing down the knowledge base in an intuitive language,
which is understandable for non-experts, as opposed to the mathematical mod-
els often used in OR techniques.

The STP has been studied in such a context of declarative programming
before, e.g., in ASP [1]. State-of-the-art answer set programming (ASP) sys-
tems typically use a two-step ground-and-solve process to unite a declarative
specification language with an efficient solver. A traditional ASP system first
grounds the problem specification to a propositional program. This step re-
duces complex language constructs and shorthands, added to the language for
expressiveness and ease of modeling, to their most basic, variable-free form. In
a second step an ASP solver is then used to generate answer sets (solutions)
for the ground program [3].

The knowledge-based system we propose for studying conflict detection and
explanation in the context of the STP, is the IDP system [2]. This system is
similar to ASP systems, but uses a language based on First Order Logic (FO),
extended with additional language features such as types and aggregates (as
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opposed to the non-monotonic reasoning ASP-language used by traditional
ASP systems).

Example 1 The trivial constraint that each class should be taught by a
teacher can be expressed by the following FO sentence:

∀c[Class] : ∃t[Teacher] : Teaches(t, c).

This sentence is grounded to a disjunction of propositions over each element
of the type Teacher, and this for each element of the type Class. Consider
the following structure:

Teacher = {Mary, John,Carl}
Class = {Maths, Physics}

The constraint is grounded to the ground program:

Teaches(Mary,Maths) ∨ Teaches(John,Maths) ∨ Teaches(Carl,Maths).

T eaches(Mary, Physics) ∨ Teaches(John, Physics) ∨ Teaches(Carl, Physics).

A solution found by the solver would then look like this:

Teaches(John,Maths). T eaches(Mary, Physics).

For knowledge-based systems, several conflict detection techniques are known
[4,6]. These techniques typically work by detecting an unsatisfiable core: a
minimal subset of an inconsistent theory that is still inconsistent [5]. However,
because existing techniques look for unsatisfiable cores in ground (i.e., propo-
sitional) theories, these cores tend to be very big and not comprehensible for
a non-programmer. Because we aim to provide information to a timetabler,
this makes these techniques unusable for us. We therefore develop a method
which reduces an inconsistent theory to a smaller theory, that is still tractable
in size and written in the same language as the original problem specification,
i.e., the highly expressive FO(·)-language.

3 Diagnosis of an unsatisfiable problem

When representing a problem specification in a knowledge base, we first need
to specify which symbols will be used for the representation (i.e. the vocab-
ulary). The constraints then correspond to a theory over these symbols and
a specific instance corresponds to a structure for part of the vocabulary. As
such, the STP can be represented as a combination of a theory on all the hard
and soft constraints of the problem (e.g., “Each class should be taught by a
therefore qualified teacher”) and a structure defining a specific STP instance
(e.g., “Mary is a teacher”, “teacher Mary is qualified to teach class Math”).

For a given theory T and structure S, the problem of finding a solution is
that of solving the model expansion problem MX(S, T ), which computes the
set of all structures S′ that extend S such that S′ |= T .
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We assume the problem to be unsatisfiable, thusMX(S, T ) = {}, i.e., there
are no solutions, and look for reductions S′ of S for which MX(S′, T ) is still
empty. S′ is considered a reduction of S if the domain of S′ is a subset of the
domain of S and, for each symbol P , the interpretation of P in S′, denoted
PS′

, is equal to the restriction of PS to the domain of S′. If for each solution
M to MX(S, T ), there exists a reduction M ′ of M such that M ′ is a solution
of MX(S′, T ), we call the reduction T-safe.

To help users understand why a model expansion problem MX(S, T ) is
unsatisfiable, we might therefore look for reductions S′ of S that are T -safe and
for which MX(S′, T ) is unsatisfiable. However, in the case that MX(S, T ) is
empty, the notion of safeness is actually not very relevant, since each reduction
is safe in that case.

Definition 1 Let T be a theory and Σ a subset of the vocabulary of T . A
reduction policy for T relative to Σ is a set of pairs (P (x), ρ(y⃗, x)) where P
is a type in Σ and ρ is a Σ-formula. Given a Σ-structure S, we say that a
reduction S′ of S follows a reduction policy if it is the case that, for all pairs
(P (x), ρ(y⃗, x)) in the policy and for each domain element d that is removed
from type P , also all elements e1, e2, . . . , en are removed from their respective
types for which S |= ρ[x/d, y⃗/e⃗]. A reduction policy is T -safe if, for each Σ-
structure S, all reductions that follow the policy are T -safe.

If we have a T -safe reduction policy, we can use the reductions that follow
this policy to conclude that, if at least one of these is unsatisfiable, also the
original model expansion problem is unsatisfiable.

Definition 2 A diagnosis of an unsatisfiable problem MX(S, T ) is a T -safe
reduction S′ of S such that MX(S′, T ) is unsatisfiable as well. Such a diagnosis
is called minimal if S′ itself is the only diagnosis of MX(S′, T ).

Example 2 Consider the following simple example. Each class must be taught,
by a teacher who is qualified to teach it, but each teacher may teach only a
single course:

∀c[Class] : ∃t[Teacher] : Teaches(t, c).
∀c[Class] t[Teacher] : Teaches(t, c) ⇒ Qualified(t, c).

∀t[Teacher] c[Class] c′[Class] : Teaches(t, c) ∧ c ̸= c′ ⇒ ¬Teaches(t, c′).

This theory is unsatisfiable in the following structure:

Teacher = {Mary, John,Carl}
Class = {Maths, Physics, English}

Qualified = {(Mary,Maths), (Mary, Physics), (John,English), (Carl, English)}
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Obviously, the problem here is the fact that Mary is the only teacher qualified
to teach both Maths and Physics. In other words, this problem will already
manifest itself in the following reduction S′ of S:

Teacher = {Mary}
Class = {Maths, Physics}

Qualified = {(Mary,Maths), (Mary, Physics)}

This reduction is T -safe. To prove this, it suffices to show that the reduction
policy consisting of the single pair (Teacher(x), Qualified(x, y)) is T -safe.
Because of the first formula, it is clear that Qualified(t, c) covers the first
formula. In order to be allowed to remove the teachers John and Carl, this
covering formula asks that we also remove all classes that John and Carl are
allowed to teach. We see that, indeed, ClassS

′
no longer contains the class

English. Therefore, MX(S′, T ) has at least as many solutions as the origi-
nal problem MX(S, T ). In other words, removing a set of teachers together
with all the classes they may teach only makes the problem easier. Because
MX(S′, T ) is unsatisfiable, it is a diagnosis of MX(S, T ). Since removing ei-
ther Mary or one of her two classes would render the problem satisfiable,
MX(S′, T ) has no more diagnoses and hence it is a minimal diagnosis. On the
other hand, removing only the teachers but not the classes is not safe, since it
makes the problem harder.

We are not interested in just any diagnosis. We are looking for those we
can explain to a user. To this end, we set up a frame that dictates which safe
reductions we want to apply to which elements in order to detect a certain
kind of conflict. If we apply such a frame to an inconsistent problem and the
reduction is inconsistent as well, then we have a diagnosis of that kind of
conflict. We try to define these frames in a way that the reductions that follow
the frame are as small as possible to still explain the conflict, but note that a
correct diagnosis is not necessarily minimal.

4 Discussion and Future work

We presented a knowledge-based approach for detecting and explaining con-
flicts in optimization problems. The problem specification is written down in
an intuitive, understandable language, unlike the typical mathematical mod-
els used in OR techniques. Additionally, as opposed to existing KRR research
on computing unsatisfiable cores from the ground program, we propose a re-
duction on the level of the problem specification itself. In this way, we not
only detect the conflicts, but also have the ability of explaining them in a
comprehensible manner to a non-programmer.

We will put the proposed concepts to practice and study their correctness
and performance in the context of the STP. We focus on ill-defined problem
specifications. To this end, we compile a data set with conflicts from a real-
life context. For our experiments we will use the IDP knowledge base system,
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which provides an expressive declarative language (FO(·)) for representing the
problem specification.
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