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1 Introduction

We consider the Medical Student Scheduling (MSS) problem in the formulation
proposed by Akbarzadeh and Maenhout [2], which is a simplified version of the
general problem previously proposed by the same authors [1].

In the MSS problem, medical students have to be assigned in subsequent
periods to a set of wards in designated hospitals, in order to complete their
training by performing internships on the disciplines carried out in the specific
wards.

This version of the problem takes into account, among other constraints and
objectives, precedences among disciplines, student preferences, waiting periods,
and hospital changes. The typical horizon considered is one year, split into either
12 periods of one month or 24 periods of two weeks.

The objective of the problem is to design a timetable that maximizes both
students’ desire and fairness among students, satisfying rules, regulations, and
requirements for the medical school and the hosting hospitals.

We developed a local search technique for the MSS problem, based on a
combination of two different neighborhood relations and guided by a Simulated
Annealing procedure.

We also implemented an instance generator that was used to create chal-
lenging instances with up to 320 students. According to Akbarzadeh and Maen-
hout [1], such number of students represents a realistic size, though much larger
than the ones in the original dataset (max 80 students). In addition, the gener-
ated instances also activate the constraint on the minimum number of students
in a ward, which is included in the model but always set to 0 in the original
instances. This constraint makes instances harder to be solved.

As customary, the generated instances are split into two sets, one used for
the parameter tuning and the other one for the validation.

Our solution method has been able to find consistently the optimal solution
value for all instances of the dataset proposed by Akbarzadeh and Maenhout [2],
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in much shorter runtime, though without any optimality guarantee, than their
exact technique.

2 Solution method

For brevity, we do not report here the precise MSS formulation, which can be
found in the original work [2].

Our local search technique uses for the search space an integer-valued matrix
that assigns to each student in each period a specific ward of a specific hospital.
That is, we use a single value that encodes a pair 〈hospital, ward〉. Since in the
original data only one given discipline can be undertaken in any specific ward,
this value specifies also the discipline. The conventional value -1 is used when
the student is not assigned to any internship in the specific period.

We decided to include in our search space also solutions that may violate two
hard constraints, namely the minimum and maximum number of students per
ward per period and the precedences among disciplines. These constraints are
taken care of by the cost function along with the soft constraints. As customary,
the hard constraint violations are assigned a higher weight, in order to favor
feasibility over optimality.

We consider the following two atomic neighborhood relations:

– Change (C). The move C〈s, p, w, p′, w′〉 reassigns the student s from the pe-
riod p at ward w to a new period p′ and a new ward w′. The move has the
precondition that s is currently idle in p′, unless p = p′; in the latter case
the move represents a reassignment of the ward in the current period p. It
is also possible that w = w′, so that the student remains in the same ward,
but at different time. It is not possible that p = p′ and w = w′, which would
result in a null move.

– Swap (S). The move S〈s, p, w, p′, w′〉 swaps the assigned wards w and w′ of
student s in the two distinct periods p and p′. The precondition here is that
the student is assigned in both periods, i.e., w 6= −1 and w′ 6= −1.

As guiding metaheuristic, we use Simulated Annealing, which already turned
out quite effective in a number of timetabling problems (see, e.g., [6, 4, 3]). The
neighborhood relation employed is the set union of Change and Swap, and the
random move selection is guided by a parameter ρS (called swap rate), such that
a Swap move is drawn with probability ρS and a Change move with probability
1− ρS .

3 Experimental results

The tuning procedure was performed on training instances of various sizes, cre-
ated by our generator specifically for this purpose. We used the tool json2run [7],
which performs the F-Race procedure [5] for selecting the best configuration. The
winning configuration has swap rate ρS equal to 0.19.
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Table 1. Comparative results between different solution methods and time limits.

CPU (s) Gap (%) Opt (%)
MIP 8054 9 50
CP 2630 1 88
DP 166 0 100

SA-5 2.5 0.09 98.1
SA-10 4.9 0.07 99.3
SA-20 9.7 0.07 99.8
SA-50 24.1 0.06 99.9
SA-100 48.2 0 100

Table 1 shows the comparison between the methods presented by Akbarzadeh
and Maenhout [2, Table 8], i.e. a Mixed Integer Programming (MIP) formulation,
a Constraint Programming (CP) formulation and a Dynamic Programming (DP)
method, and our method based on Simulated Annealing with increasing number
of iterations (106k with k ∈ [5, 10, 20, 50, 100]), denoted by SA-k . The table
reports for each method the average results obtained on all original instances
in terms of computational time in seconds (CPU), final optimality gap (Gap)
and percentage of instances solved to optimality (Opt) within the time limit3.
These results show that we can obtain the optimal value already in 2.5 seconds
on average, with a confidence of 98.1%. With 9.7 seconds we reach the near
certainty given by the confidence of 99.8%.

The project is still ongoing, and the current work regards the experimentation
on larger and more challenging instances, the development of exact methods, and
the design of hybrid approaches.
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