
Noname manuscript No.
(will be inserted by the editor)

Enhancing Security via Deliberate Unpredictability
of Solutions in Optimisation

Daniel Karapetyan · Andrew J. Parkes

Received: date / Accepted: date

Abstract The main aim of decision support systems is to find solutions that
satisfy user requirements. Often, this leads to predictability of those solutions,
in the sense that having the input data and the model, an adversary or enemy
can predict to a great extent the solution produced by your decision support
system. Such predictability can be undesirable, for example, in military or se-
curity timetabling, or applications that require anonymity. In this paper, we
discuss the notion of solution predictability and introduce potential mecha-
nisms to intentionally avoid it.

Keywords Unpredictability · Decision Support · Diversity of Solutions ·
Perfect Matching Problem

1 Introduction

A search algorithm, even non-deterministic, is likely to be biased to some
solutions, and hence anyone knowing the input data and the algorithm might
be able to predict much of the solution. This can be an issue if the solution
has to be kept in secret. One of many examples of this is the scheduling of
tasks in cloud computing. In this problem, computational tasks are assigned to
various servers and time slots. While respecting the constraints and efficiency
considerations, one may want to keep the schedule as unpredictable as possible
to reduce the chances of the potential intruder to guess the server and/or time
slot assigned to a specific task.

D. Karapetyan
School of Computer Science, University of Nottingham
E-mail: daniel.karapetyan@nottingham.ac.uk

A. J. Parkes
School of Computer Science, University of Nottingham
E-mail: andrew.parkes@nottingham.ac.uk

89

2 Daniel Karapetyan, Andrew J. Parkes

Solution space

A B

Decision variable

Fig. 1: Example of solution space with all the feasible solutions grouped into
two clusters A and B. Cluster A contains many more solutions than cluster
B; as a result, uniform sampling from the entire set of feasible solutions will
be biased towards cluster A, hence the value of the ‘decision variable’ will be
‘predictable’.

Solution unpredictability can be understood in many ways. In our example,
one may be interested in predicting the exact server and time slot for a task,
or may be interested in predicting only the server, or even an approximate
location of the server (i.e., the specific data centre). Our aim here is not to
give a generic formulation of the problem; but to point out potential interesting
extensions of the classic decision support, and to provide some relevant results,
and so to encourage further discussion of the topic.

In particular, we discuss diversity issues in the context of the assignment
problem, or specifically of variations of Perfect Matching Problems in bipartite
graphs, which is closely related to the task assignment in cloud computing.
We want the locations/times of different tasks to be unpredictable (to make
hacking harder) and so need diverse assignments to select from.

2 Generation of Unpredictable Solutions

A straightforward approach to achieve unpredictability of solutions is to ran-
domly sample the set of feasible solutions. (A standard technique to do this
is the “rapidly mixing Markov Chains”, e.g. see [1,4]) However, to enhance
security, the sampling should not necessarily be uniform. To illustrate this, we
refer to Figure 1. in which the sets of feasible solutions form clusters, i.e. sub-
sets of similar solutions (e.g. see [3]). In the example given in Figure 1, all the
solutions are grouped into two clusters: A and B. Hence, solutions within each
cluster share similar values of the ‘decision variable’. Cluster A contains more
solutions, and hence a solution selected with uniform sampling is likely to be
from cluster A. This will make the value of the decision variable predictable;
with high probability, it will correspond to the first cluster.

90

Enhancing Security via Deliberate Unpredictability of Solutions in Optimisation 3

To address this issue, we may want to pre-select a subset of diverse feasible
solutions and then pick one of them randomly. For example, such a subset may
be obtained by selecting 10 feasible solutions such that the total Hamming
distance between them is maximised. (In a loose sense, we are doing the exact
opposite of the work on minimal perturbations, such as [2], which aimed to
find nearby solutions, and instead are looking for “maximal perturbations”.)

This approach is likely to generate interesting optimisation challenges. Do-
ing it directly by first enumerating all solutions is generally impractical, even
for problems where finding a solution is easy. Indeed, just counting all the
feasible solutions is generally #P-hard, and the solutions sets are typically
exponential in size.

Also, there is the challenge of selecting diverse sets of solutions. This cor-
responds to a kind of “Maximum Diversity Problem” and again likely to be
NP-hard. We expect that heuristic approaches can be used to address these
complexity issues, though maybe with special cases for which efficient algo-
rithms are available.

However, in this work-in-progress paper, naturally, we do not answer these
questions. Instead we consider the relatively simple case of perfect matching
problems, or assignment problems; though these problems are of interest in
their own right. For enhanced security of systems using assignment problems,
we might well want to increase the unpredictability of such solutions. Accord-
ingly, in the next section, Section 3, we study the problem of finding diverse
solutions to the perfect matching problem, and present relevant decision and
optimisation problems, with some initial work on solution methods.

3 Diverse Solutions Sets for the Perfect Matching Problem

Firstly, a quick reminder of the base problem:

NAME: Perfect-Matching
INSTANCE: A bipartite graph G = (U, V,E) over vertices (U, V) of sizes

(n, n) and with edges E.
SOLUTION: A vertex-disjoint subset M ⊆ E of n edges, i.e. a subset of the

edges that cover every node, and that are disjoint (do not share any nodes).

Finding one solution (perfect matching) is well-known to be polynomial-
time (e.g. using the Hungarian method). However, this does not mean that all
questions about perfect matchings are necessarily easy. For example, counting
the number of solutions is #P (sharp-P); a class that is (generally assumed)
much harder than NP. In particular, we remark, that there may well be that
there are questions, relevant to diversity, about the set of solutions (perfect
matchings) that may also be harder than P (under usual assumptions, such as
P 6= NP).

Firstly, suppose that we are given one perfect matching, and to promote
diversity, we want to find another one that is “as different as possible”. For

91

4 Daniel Karapetyan, Andrew J. Parkes

simplicity, we will just measure the difference or or distance between match-
ings, hence, maximising the number of edges that are different. (Since we are
looking at perfect matchings then this is also equivalent to minimising the
number of edges which are shared between matchings.) Specifically, we define
the problem

DEFINITION: Distant-Perfect-Matching
INSTANCE:

– Bipartite (unweighted) graph G, on (n, n) nodes;
– Perfect matching M1;
– Integer 0 ≤ d ≤ n.

QUESTION: Does there exist another perfect matching M2, such that M1

and M2 differ on at least d assignments? In other words, does there exist
a matching M2 such that |M1 ∩M2| ≤ n− d?

The maximum distance, d = n, is easy because it means that no edges can
be shared. Hence, we can simply solve this case by removing all the edges in
M1 from E, and then looking for a perfect matching in this reduced graph.

The problem of finding maximum d can also be solved in poly-time using
the given solution M1 to modify the weights of the edges, giving a new weighted
graph and then doing a maximum weight perfect matching on this graph.

This approach has the drawback that we need to provide the first match-
ing. Instead, generally we want to simultaneously find a pair of well-separated
perfect matchings – ones differing on at least d edges. Using the usual distinc-
tion between ”maximal” (local) and ”maximum” (global), this leads to two
problems, Firstly, the “maximal” separation:

DEFINITION: Maximal-Separated-Perfect-Matchings
INSTANCE:

– Bipartite (unweighted) graph G on (n, n) nodes;
TASK: Find a pair of matchings M1 and M2, that are maximally separated.

That is, no matching is further from M1 than M2 is, and vice versa.

This is in poly-time because we just iterate solution to Distant-Perfect-
Matching, switching between which matching is considered the fixed one.
Starting from any matching, call it M1, then find the most distant, call it M2,
then find the most distant from M2 etc, terminating when the distance no
longer increases – which must happen within O(n) iterations.

This problem is like finding local optima under the (large) move of finding
the most distant matching. The corresponding global optimum version is to
demand “maximum” separation, equivalent to the following decision problem:

DEFINITION: Maximum-Separated-Perfect-Matchings
INSTANCE:

– Bipartite (unweighted) graph G on (n, n) nodes;
– Integer 0 ≤ d ≤ n.

QUESTION: Do there exist perfect matchings M1 and M2, such that M1 and
M2 differ on at least d assignments?

92

Enhancing Security via Deliberate Unpredictability of Solutions in Optimisation 5

A special case of this is again a maximal separation, d = n, which re-
quires a disjoint pair of perfect matchings. However, given two disjoint perfect
matchings, then each vertex has two distinct edges to it; by following these
we get disjoint cycles. So the d = n case is equivalent to finding a “Disjoint
Vertex Cycle Cover” – a set of disjoint cycles that contain all the vertices.
This is known to be polynomial time by conversion to a matching problem1.
Currently, we do not know whether the Separated-Perfect-Matchings
problem for an arbitrary d is in P, or is NP-complete (or otherwise).

4 Conclusions

In this paper, we discussed the concept of unpredictability of solutions in
automated decision support. As a motivating example, we consider a simple
assignment problem, which could easily be part of task scheduling in cloud
computing. The aim is that unpredictability of task assignments will increase
security of the system, by making it harder for malicious agents to guess
locations and time slots of tasks. The most obvious approach to achieving
unpredictability, random sampling of solutions, turns out to be computation-
ally hard and weak. Indeed, uniform sampling is both complex and would not
necessarily give us the desired diversity of solutions.

Hence, we focus on finding a few diverse solutions; then we can select one
of them randomly to achieve unpredictability. We model the task scheduling
using the bipartite matching. We gave some initial definitions that relate to
finding diverse pairs of matchings. In particular, observing that finding max-
imally separated matchings is possible in polynomial time. Though not (yet)
answering the question of finding the pairs with maximum separation. Also
whilst we found that it is easy to find a pair of non-overlapping solutions, we
do not know whether this result generalises to a higher number of solutions.

This is still work in progress and more research is needed to establish effi-
cient methods for increasing unpredictability of solutions in new and existing
decision support systems. For example, here we have discussed only issues of
selecting from ‘feasible’, but it could be that this includes quality being above
some threshold.

References

1. Guruswami, V.: Rapidly mixing markov chains: A comparison of techniques (a survey)
(2016)

2. Müller, T., Rudová, H., Barták, R.: Minimal perturbation problem in course timetabling.
In: E. Burke, M. Trick (eds.) Practice and Theory of Automated Timetabling V, pp. 126–
146. Springer Berlin Heidelberg, Berlin, Heidelberg (2005)

3. Parkes, A.J.: Clustering at the phase transition. In: Proceedings of the fourteenth national
conference on artificial intelligence and ninth conference on Innovative applications of
artificial intelligence (AAAI-97), pp. 340–345 (1997)

1 See https://en.wikipedia.org/wiki/Vertex_cycle_cover

93

6 Daniel Karapetyan, Andrew J. Parkes

4. Sinclair, A., Jerrum, M.: Approximate counting, uniform generation and rapidly mixing
markov chains. Information and Computation 82(1), 93 – 133 (1989). DOI https://doi.
org/10.1016/0890-5401(89)90067-9

94

