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Abstract. Underground mining is a complex operation that requires
careful planning. The short-term scheduling, which is the scheduling of
the tasks involved in the excavation process, is an important part of
the planning process. In this paper, we propose a new method for the
short-term scheduling of cut-and-�ll mines.
Our problem formulation includes a new aspect of the problem, which
is to handle that di�erent excavation locations of the mine can have dif-
ferent priorities. The inclusion of this aspect allows the user to control
the output of the scheduling and to direct resources to the locations
where they are most needed according to the long-term plans. Our solu-
tion method consists of two components: a priority-based heuristic that
constructs a complete solution by iteratively solving partial scheduling
problems containing subsets of tasks, and a logic-based Benders decom-
position scheme for solving these partial problems.
The computational performance of the proposed method is evaluated
on industrially relevant large-scale instances generated from data pro-
vided by the mining company Boliden. Comparisons are made both
with applying a constraint programming solver instead of the logic-based
Benders decomposition scheme and with applying a constraint program-
ming solver directly on the complete problem. The results show that our
method outperforms the other two methods and yields schedules with
a shorter makespan. The used instances are made publicly available to
support further research in this area.

Keywords: Underground-mine scheduling · Cut-and-�ll mining · Logic-
based Benders decomposition · priority-based heuristic
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Emil Lindh, Kim Olsson, and Sam Olsson. The results from that project have been
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1 Introduction

The excavation of an underground mine is a complex operation that requires
careful planning. This planning is usually done in several phases with di�erent
time horizons. For an in-depth description of the planning phases, see [11]. The
two components of the planning process that we address are the so-called extrac-

tion plans and the short-term scheduling. The extraction plans describe when a
certain amount of ore from a certain part of the ore body should be excavated.
The short-term scheduling then executes these plans by scheduling the activities
and the machines involved in the excavation process.

In this paper, a new method is proposed for solving large-scale instances of a
short-term scheduling problem for a cut-and-�ll mine. Our problem formulation
di�ers somewhat from previous work [11,13�15] as it includes a priority order be-
tween excavation locations. This extension of the formulation is proposed since,
in practice, the urgency of the di�erent excavation locations may di�er. The
reason for the di�erences can depend both on the nature of the extraction plan
and on the progress made at each location, compared to what was expected.
During excavation, activities are often postponed due to unforeseen events and
the priority can therefore change between scheduling periods and it is important
for the planners to be able to direct the resources to the locations where they
are most needed.

Our solution method combines a priority-based heuristic with Logic-based
Benders decomposition (LBBD). Computational results are provided for indus-
trially relevant large-scale instances based on data from an operational mine.
These instances have been made publicly available1. The project has been car-
ried out in collaboration with the mining company Boliden and the paper is
based on the master's thesis by the �rst two authors [6].

1.1 Problem de�nition

In cut-and-�ll mining, the process of excavating a single volume of ore involves 11
tasks: drilling, charging, blasting, ventilation, watering, loading, scaling, cleaning,
shotcreting, bolting, facescaling and facecleaning. In our problem formulation, the
ventilation task is merged with the blasting task since none of them requires a
machine; this results in having only 10 tasks to schedule. Together, these 10
tasks form an excavation cycle. A location where excavation takes place is called
a face, and a mine can have several active faces in parallel.

Each task requires a speci�c type of machine and some tasks require the
same machine type. There is a limited number of machines of each type and
all machines of the same type are assumed to be identical. The tasks must be
scheduled in the correct order at each face, and an excavation cycle cannot
begin unless the previous cycle at the same face has been completed. Each day
is divided into two work shifts, 06:30 - 14:30 and 15:30 - 00:00, and only the
interruptible tasks can be started in one shift and �nalised in the next. The

1 https://gitlab.liu.se/eliro15/underground_mining_instances
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shotcreting task requires a four-hour afterlag for the concrete to solidify before
the next task can be performed. The blasting task can only occur during speci�c
blasting windows between the work shifts, starting at either 15:00 or 00:42 and
lasting 30 minutes. During a blasting window, the mine has to be evacuated due
to safety reasons. Some tasks can be interrupted during the blasting windows
while others cannot.

A task in a speci�c cycle that is to be scheduled at a speci�c face will hence-
forth be referred to as a task instance. Each machine type has an estimated
velocity and when moving between two task instances at di�erent faces, there is
a travel time between the faces. The scheduling considers a number of excavation
cycles at a number of faces and aims at minimising the sum of the individual
makespans for the faces, while respecting the above-introduced constraints. A
more in-depth problem description is found in [11] and [6].

1.2 Related work

The short-term scheduling problem considered in this work is not well-studied.
There is however a series of papers from a PhD thesis [11] that addresses indus-
trially relevant instances of underground mining problems. In this series of work,
the scheduling of cut-and-�ll mining is structured as a �ow shop [13] and mod-
elled by a CP formulation [14]. In [15], the problem formulation and the model
of [13] and [14] are improved to better capture the characteristics of cut-and-�ll
mining, and the authors propose heuristics based on large neighbourhood search
for solving the problem. The instances used in this series of work are unfortu-
nately not available for further research or comparisons in this paper. Instead,
we have made a re-implementation of their CP model to use for benchmarking.
In [12], their results are extended to a more general underground-mining setting.

In [9] and [7], mixed-integer programming (MIP) approaches were applied
to similar scheduling problems. In [9], the authors present a MIP model for a
makespan minimizing mobile production �eet scheduling problem for a room-
pillar mine. They solve small instances to optimality using a commercial solver
and present heuristic methods for solving instances of larger sizes. In [7], the
authors study a scheduling problem for a sublevel stoping mine, which includes
the transportation of ore, and solve it using a MIP model and CPLEX. In [10], a
scheduling support instrument is developed that schedules some of the activities
in a production cycle.

To the best of our knowledge, there is no previous work where LBBD has been
applied to this type of scheduling problem. However, LBBD has been successfully
applied to other scheduling problems [1, 2, 5, 8].

1.3 Contributions and outline

Today, the short-term scheduling of the excavation process at Boliden is done
manually. As manual scheduling is a time-consuming and complex operation
that does not guarantee consistency in production e�ciency, a more autonomous
way of scheduling can yield great improvements. Heuristic methods for solving
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realistic instances of this scheduling problem, with the objective to minimise
makespan, have been developed [11]. However, many questions remain with re-
spect to how to model and e�ciently solve this problem. In particular, one crucial
aspect for applicability in practice is the choice of objective function and how to
take into account how the excavation progresses over time. Our work contributes
to improved modelling of the problem and with a new strategy for solving it.
These contributions are based on the following two fundamental observations
about the problem that we have not seen addressed in previous work.

The �rst observation is that the problem has some inherent symmetries due
to the machines being identical and the excavation cycles and the durations of
tasks being the same for all faces. Even if the di�erent travel times between
faces contribute to breaking some of these symmetries, several solutions with
the same or very similar makespan are likely to exist. A practical consequence
of this property is that there is room for the decision-maker to choose between
several plans with about the same e�ciency in terms of length of makespan �
which is the most important evaluation measure for a schedule.

Through discussions with practitioners, we learned that because of how the
mining progresses and because of other aspects of the planning, the urgency of
the faces can di�er. This suggests that, in addition to the objective to minimise
makespan, it is desirable to consider that there is a priority order between the
faces. Therefore, we propose a priority-based heuristic to incorporate face priori-
ties, while keeping the original makespan objective both in the models and as an
evaluation measure for the solutions. Using this evaluation measure allows for a
comparison with previous work. By using the priority-based heuristic, we both
increase the decision-maker's control of the scheduling output and improve the
computational times thanks to the symmetry breaking e�ect. This aspect of the
model and method design is evaluated through a comparison between directly
applying a CP solver using a carefully crafted model from previous work [11],
referred to as M-CP, and applying an adaptation of this model in each iteration
of the priority-based heuristic, referred to as H-CP.

The second observation is that by slightly reformulating the makespan ob-
jective, one obtains a formulation that lends itself to LBBD with a feasibility
subproblem. This new objective was also developed in dialogue with Boliden. It
is less granular than the standard objective function that directly aims to min-
imise the makespan and, instead, the focus is on which shifts to use to e�ciently
perform the tasks. Using the new objective, we introduce a LBBD scheme and
tailored acceleration techniques to be applied in each iteration of the priority-
based heuristic. The resulting approach is referred to as H-LBBD. Since the
LBBD scheme is applied within the heuristic, its e�ciency is evaluated in a
direct comparison with approach H-CP.

The models and the heuristic are presented in Section 2 and the LBBD
scheme, along with the acceleration techniques, is introduced in Section 3. Com-
putational results are presented in Section 4. Conclusions and comments about
possible future work are given in Section 5.
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2 Modelling and priority-based heuristic

This section presents a complete CP model of the problem and the heuristic.

2.1 Monolithic CP-model

The CP model presented here is a re-implementation of the models presented
in [11], and we refer to the previous work for a detailed motivation and descrip-
tion of the models. In previous work, the problem is described in a k-stage hybrid
�ow shop framework [13] where a job corresponds to an excavation cycle which
is passed through k stages, each stage corresponding to a certain task within
the excavation cycle. The model is adapted to the speci�c problem structure by
including travel times and by removing time periods from the schedule in which
the mine is evacuated or empty, i.e blasting windows and shift breaks. The latter
results in a problem formulation in compressed time, and the solution is later
post-processed to obtain the solution in the correct time. This compressed-time
reformulation was introduced in [15], where a detailed description is found.

The notation used in the CP model is as follows. Let the set M index the
machines, the set F index the faces, and the set T = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
index the tasks. Further, let J be the maximum number of cycles to schedule
and let the set Jf ⊆ {1, . . . , J} index the cycles at face f ∈ F . A task instance
is speci�ed by a task t ∈ T at a face f ∈ F in a cycle j ∈ Jf . To simplify
notation, we introduce a mapping of the indices of such task instance (tfj) to
a single index a and let A contain all task instances. Let Fa denote the face at
which task instance a ∈ A is to be scheduled. Furthermore, let the set B index
the blasting windows b and let sb be the time when blasting window b ∈ B starts
and ends (these times coincides in the time-compressed model).

Let the set Ma ⊆ M index the machines which can execute task instance
a ∈ A and let the set Am

m index the task instances that machine m ∈ M can
perform. Also, let the sets A(un) ⊆ A, A(al) ⊆ A, and A(bl) ⊆ A index the
uninterruptible task instances, task instances that require afterlag, and blasting
task instances, respectively. For each face f ∈ F , let the ordered set Af

f index
all the task instances, except the last one, in their execution order at face f .

Denote the duration of task instance a ∈ A by Da and the duration of
blasting window b ∈ B by d(b). Let the duration of the afterlag be denoted by
d(al) and let the travel time between faces f, f ′ ∈ F , be lff ′ . For each a ∈ A
and m ∈Ma the optional interval variable

Iam = (sam, eam, Da,oam)

holds the start time sam, end time eam, and duration Da of task instance a.
Also, it indicates by oam whether machine m performs task instance a or not.

To handle the compressed time, a variable d
(al)
a is introduced to calculate the

correct afterlag. The variable nextBlastam provides the next possible blast
occasion following task instance a ∈ A executed by machine m ∈Ma. Lastly, a
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precedence variable for a, a′ ∈ Am
m, m ∈M is de�ned as

baa′ =


1 if task instance a precedes task instance a′ on machine m,

0 if task instance a′ precedes task instance a on machine m,

⊥ if task instance a and a′ are done by di�erent machines.

The complete CP-model is

min
∑
f∈F

max
a∈Af

f

m∈Ma

(
oam × eam

)
,

s. t.
∑

m∈Ma

oam = 1, a ∈ A, (1a)

sam ∈ {sb|b ∈ B}, a ∈ A(bl),m ∈Ma, (1b)

sam ∈
⋃
b∈B

{sb−1, . . . , sb −Da}, a ∈ A(un),m ∈Ma, (1c)

baa′ = 1 ⇐⇒
oam ∧ oa′m ∧ sam +Da + lFaFa′ < sa′m m ∈M, a, a′ ∈ Am

m, (1d)

baa′ = 0 ⇐⇒
oam ∧ oa′m ∧ sa′m +Da′ + lFa′Fa < sam, m ∈M, a, a′ ∈ Am

m, (1e)

baa′ = ⊥ ⇐⇒ ¬(otm ∧ ot′m), m ∈M, a, a′ ∈ Am
m, (1f)

nextBlastam ∈ {sb|b ∈ B}, a ∈ A(al), (1g)

d(al)
a =


d(al) if sam +Da + d(al) < nextBlastam

d(al) − d(b) if sam +Da + d(al) > nextBlastam + d(b)

d(al) −∆d(al) otherwise, a ∈ A(al),

(1h)

sam +Da + d(al)
a ≤ s(a+1)m, f ∈ F , a ∈ Af

f ∩ A(al),m ∈Ma, (1i)

sam +Da ≤ s(a+1)m, f ∈ F , a ∈ Af
f \ A(al),m ∈Ma, (1j)

where ∆d(al) = sam +Da + d(al) − nextBlastam.

2.2 Priority-based heuristic

The main principle of the heuristic is to iteratively extend and solve the problem
with more task instances and to �x a majority � but not all � of the decisions
made in each iteration. To de�ne the iterations of the heuristic, we introduce
a batching of the tasks as illustrated in Figure 1. This batching is done such
that there is a reasonable amount of decisions to be made for each batch and
so that these decisions can be made in isolation for the current batch, even if
they of course have dependencies to other decisions. Note especially that, for
this reason, a batch always ends with an uninterruptible task.

In the �rst iteration of the heuristic, two batches are scheduled and there-
after, one batch at a time is added to the problem � and each such addition
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Fig. 1. The batching of tasks within a cycle

corresponds to one iteration of the heuristic. The order in which to add the
batches is determined by the excavation cycle number, the priority of the face,
and the batch number. Among these, the cycle number always has precedence,
which means that all batches on all faces for a certain cycle number are scheduled
before a next cycle is considered. For each cycle number, the order is primarily
determined by the face priority, and for each face, its batches are added one at
a time in accordance with the batch number.

A more formal description of the heuristic is presented through pseudo-code
in Algorithm 1. Additional notation used in this description is that we let F (prio)

be an ordered set of face indices, given in the order of decreasing face priority,
and that we let bi contain the tasks in batch i ∈ {1, 2, 3}. The scheduling within
each iteration is done either by applying a CP solver to the model introduced in
Section 2.1 (but adapted to batch-wise scheduling) or by using the LBBD scheme
to be introduced in Section 3. In Algorithm 1, such scheduling is referred to as
applying a scheduling_method.

Algorithm 1 Priority-based heuristic

1: Input: J ; Jf , f ∈ F ; F (prio); b1, b2, b3; scheduling_method
2: for j = 1, . . . , J do

3: k = 1
4: while k ≤ |F (prio)| do
5: if k = 1 and j = 1 then
6: for i ∈ {1, 2, 3} do
7: add batch bi of cycle j = 1 at faces f1, f2 ∈ F (prio)

8: apply scheduling_method
9: k = k + 2
10: else

11: for i ∈ {1, 2, 3} do
12: add batch bi of cycle j ∈ Jf at face f ∈ F (prio)

13: apply scheduling_method
14: k = k + 1

In detail, a batch is scheduled by applying a scheduling_method on a
current partial problem, which includes all of the previously scheduled batches
as well as the current batch. The scheduling_method takes the scheduling
decisions for the current batch, but the previously scheduled batches are included
since the current batch has to be scheduled in relation to the already scheduled
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batches, e.g to be able to respect travel times. Once the scheduling_method
has been applied, some scheduling decisions for the current batch will be �xed.
When applying the LBBD scheme, these scheduling decisions are the machine
assignments and the work shift assignments for each task instance. When apply-
ing a CP solver directly, these decisions are the machine assignments and the
start times of each task instance.

3 Logic-based Benders decomposition

This section introduces an LBBD scheme designed to be used as a schedul-
ing_method in the priority-based heuristic presented in Section 2.2. In the
monolithic CP model, the objective is to minimise the sum of makespans of the
faces, with the makespan of a face de�ned as the time when its last task instance
is completed. In dialogue with Boliden, we concluded that this commonly used
scheduling objective might not best re�ect the decision problem to be solved
in practice. Instead, we decided to focus on which shifts to schedule the task
instances in, choosing as early shifts as possible, and then minimise the total
duration of the task instances scheduled in the last shift used for a face. An
important bene�t of using this objective is that it allows for designing an LBBD
scheme where the subproblem is a feasibility problem.

The decomposition is made such that in a MIP master problem, task in-
stances are assigned to work shifts and machines are assigned to task instances.
A CP subproblem is then used to schedule the tasks within the work shifts, re-
specting the machine assignments. Both problems are formulated in compressed
time as introduced in [15]. The LBBD scheme iterates between solving the mas-
ter problem and the subproblem, and if the subproblem is infeasible, a no-good
cut or a set of no-good cuts are fed back to the master problem. These LBBD
iterations are continued until the subproblem becomes feasible and then the
master problem decisions for the current batch are �xed and returned to the
heuristic. The values of the variables in the subproblem are never �xed since it
is pro�table if these can be adjusted depending on future master problem deci-
sions. To enhance the performance of the LBBD scheme, cut-strengthening and
problem-speci�c cuts are introduced, and the master problem is formulated to
include a subproblem relaxation.

3.1 Master problem

The role of the master problem is to assign task instances to work shifts and
machines to task instances. To formulate the MIP model, the following additional
notation is used. Let the set W index all work shifts and let the set W l index
all work shifts except the �rst one. Also, let the setMt ⊆ M index the subset
of machines that can perform task t ∈ T .

To handle the batches, let the set F (ba) ⊆ F index the currently and pre-

viously scheduled faces, and let the set J (ba)
f ⊆ Jf index the currently and
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previously scheduled cycles at face f ∈ F (ba). Also, let the set Tfj ⊆ T in-

dex the tasks in cycle j ∈ J (ba)
f at face f ∈ F (ba) that are included in the

currently and previously scheduled batches and denote the last included task
in each Tfj by t̄fj . The main decision variables of the master problem are, for

t ∈ Tfj , f ∈ F (ba), j ∈ J (ba)
f , w ∈ W and m ∈Mt,

xtfjwm =


1 if task t at face f in cycle j is assigned to work shift w and

performed by machine m,

0 otherwise.

The duration of a task t ∈ T is Dt and each work shift w ∈ W has a length
Dw = ew − sw, where ew and sw are the end and start times of the work shift,
respectively. The second longest duration of all tasks is denoted p and used as
an aid when �tting task instances into work shifts. Some constraints are speci�c
to batch 2 and the parameter Bfj is used to indicate if batch 2 has been or is

currently being scheduled in cycle j ∈ J (ba)
f at face f ∈ F (ba).

For f ∈ F (ba), j ∈ J (ba)
f , w ∈ W and m ∈ M6 and given that Bfj = 1 the

following variables are de�ned to account for afterlag in the master problem,

yfjwm =

{
1 if task 6 and task 7 are assigned to the same work shift,

0 otherwise.

The face and cycle last added to F (ba) and J (ba)
f , respectively, are denoted by

f̄ and j̄f̄ . The objective value is represented by the auxiliary variable of̄ which
is de�ned by constraint (2n) below. The master problem is

min of̄ ,

s. t.
∑

w∈W,m∈Mt

xtfjwm = 1, t ∈ Tfj , f ∈ F (ba), j ∈ J (ba)
f , (2a)

∑
w∈W,m∈Mt−1

swx(t−1)fjwm ≤
∑

w∈W,m∈Mt

swxtfjwm, t ∈ T l
fj , f ∈ F (ba), j ∈ J (ba)

f , (2b)

∑
w∈W,m∈Mt−1

ewx(t−1)fjwm ≤
∑

w∈W,m∈Mt

swxtfjwm, t ∈ T̃ c
fj , f ∈ F (ba), j ∈ J (ba)

f , (2c)

∑
w∈W,m∈M9

swx9f(j−1)wm ≤
∑

w∈W,m∈M0

swx0fjwm, f ∈ F (ba), j ∈ J (ba),l
f , (2d)

∑
m∈Mt,t∈T c

fj

Dtxtfjwm +
∑

m∈M1

(D1 + p)x1fjwm +

Bfj

(∑
m∈M7

px7fjwm +
∑

m∈M6

d(al)yfjwm

)
≤ Dw + p,

f ∈ F (ba), j ∈ J (ba)
f , w ∈ W, (2e)∑

m∈Mt,t∈Tfj

Dtxtfj(w−1)m +
∑

m∈Mt,t∈T c

fj

Dtxtfjwm +
∑

m∈M1

(D1 + p)x1fjwm +
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Bfj

(∑
m∈M6

d(al)
(
yfj(w−1)m + yfjwm

)
+
∑

m∈M7

px7fjwm

)
≤

ew − s(w−1) + p, f ∈ F (ba), j ∈ J (ba)
f , w ∈ W l, (2f)

Bfj

∑
t∈Ts,m∈Mt

(xtfj(w−1)m + xtfjwm) ≤ 3, w ∈ W, f ∈ F (ba), j ∈ J (ba)
f , (2g)

Bfj

∑
m∈M7

(x7fjwm + x6fjwm̃ − yfjwm̃ − 1) ≤ 0,

f ∈ F (ba), j ∈ J (ba)
f , w ∈ W, m̃ ∈M6, (2h)

Bfj(yfjwm − x6fjwm) ≤ 0, f ∈ F (ba), j ∈ J (ba)
f , w ∈ W,m ∈M6, (2i)

Bfj

∑
m∈M7

(x7fjwm − yfjwm̃) ≥ 0,

f ∈ F (ba), j ∈ J (ba)
f , w ∈ W, m̃ ∈M6, (2j)∑

j∈J (ba)
f ,f∈F(ba)

x7fjwm ≤ 1, w ∈ W,m ∈M7, (2k)

[no-good cuts], (2l)

[problem-speci�c cuts], (2m)∑
m∈Mt̄

swxt̄f̄ j̄wm +
∑

t∈Tf̄ j̄ ,m∈Mt

Dtxtf̄ j̄wm ≤ of̄ , w ∈ W, (2n)

where for, f ∈ F (ba) and j ∈ J (ba)
f , T c

fj = Tfj \ {2, 8}, T l
fj = Tfj \ {0} and

T̃ c
fj = Tfj ∩{2, 8}. Additionally, t̄, f̄ , and j̄ denote the last task, face, and cycle,

respectively, in the batches currently considered, and J (ba),l
f is the set of cycles

in J (ba)
f excluding the �rst cycle and Ts = {6, 7, 8, 9} ⊂ T .

The objective essentially directs the master problem to schedule each task in-
stance in the earliest possible work shift, and to leave as short total task duration
as possible for the last used shift. Constraint (2a) assigns exactly one machine
to each task instance. Constraints (2b) and (2d) make sure that consecutive
task instances are assigned to the same or to consecutive work shifts, while con-
straint (2c) prevents the pairs charging and watering, and bolting and facescaling,
respectively, to be assigned to the same work shifts since it is impossible for those
pairs of task instances to be scheduled in the same shift. Constraints (2e), (2f)
and (2g) restrict which task instances that can be placed in the same work shifts,
essentially removing some assignments that will be infeasible in the subproblem.
Constraints (2h)�(2j) de�ne the value of the afterlag variable. Constraint (2k)
bounds the number of task instances a bolting machine can be assigned to in
a work shift. Finally, the no-good cuts and the problem-speci�c cuts (to be in-
troduced in Section 3.3) generated so far in the solution process are represented
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by (2l) and (2m), respectively. Note that constraints (2c) and (2h)�(2k) form a
subproblem relaxation that strengthens the master problem.

3.2 Subproblem

A CP solver is applied to solve the subproblem, using a model derived from the
monolithic model in Section 1. The adjustments made to account for the master
problem decisions are as follows. Let the set Acurr index the task instances that
are to be scheduled by the subproblem and let w̄a denote the work shift assigned
to task instance a ∈ Acurr. The machine assigned to task instance a ∈ Acurr

is denoted by m̄a and the set that includes the indices of the used machines
is denoted by M̄. Due to the �x machine assignments, the interval variables
are no longer optional and constraint (1a) is not needed in the subproblem
model. Furthermore, the domains of the interval variables will be restricted to
their assigned work shifts by the constraints (3a) and (3b) and for this reason,
constraint (1c) is not needed in the subproblem. Moreover, the scheduling of the
blasting tasks does not need to be handled in the subproblem, since the master
problem assignment of the charging and watering tasks imply when blasting will
occur. Hence, constraint (1b) does not need to be included in the subproblem
and the nextBlast variables are �xed, resulting in that also constraint (1g) is
redundant to include in the subproblem model. Lastly, the subproblem has no
objective function since the objective depends only on master problem decisions.
Hence, the constraints to be included in the subproblem model are

startOf(Iam̄a
) ∈ {sw̄a

, . . . , ew̄a
−Da}, a ∈ A(un) ∩ Acurr, (3a)

startOf(Iam̄a) ∈ {sw̄a , . . . , ew̄a +Da}, a /∈ A(un) ∩ Acurr, (3b)

baa′ = 1 ⇐⇒ sam̄a +Da + lFaFa′ < sa′m̄a , m ∈ M̄, a, a′ ∈ Am
m ∩ Acurr, (3c)

baa′ = 0 ⇐⇒ sa′m̄a′ +Da′ + lFa′Fa < sam̄a , m ∈ M̄, a, a′ ∈ Am
m ∩ Acurr,

(3d)

d(al)
a =


d(al) if sam̄a +Da + d(al) < nextBlastam̄a

d(al) − d(b) if sam̄a
+Da + d(al) > nextBlastam̄a

+ d(b)

d(al) −∆d(al) otherwise, a ∈ A(al) ∩ Acurr,

(3e)

sam̄a
+Da + d(al)

a ≤ s(a+1)m̄a+1
, f ∈ F , a ∈ Af

f ∩ Acurr ∩ A(al), (3f)

sam̄a
+Da ≤ s(a+1)m̄a+1

, f ∈ F , a ∈ Af
f ∩ Acurr \ A(al), (3g)

where ∆d(al) = sam +Da + d(al) − nextBlastam.

3.3 Feasibility cuts

Whenever the subproblem is infeasible, that information is fed back to the master
problem in form of a no-good cut [3, 4] on the form

1−
∑
a∈Ā

xaw̄am̄a
≥ 1,
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using the mapping a = (tfj) in the de�nition of the variable x and the set Ā to
index the task instances included in the cut. For a no-good cut that originates
from solving the subproblem, Ā = Acurr holds. Since such cut is not very strong,
we designed and applied the following two cut-strengthening methods.

The �rst cut-strengthening method, presented in Algorithm 2, is shift-based
and applied in the �rst iteration of the heuristic when the subproblem is still of
small size. It strengthens a no-good cut through three steps: (I) Start at work
shift 0 and add one work shift at a time to the subproblem, until it becomes
infeasible. (II) Apply a greedy cut strengthening algorithm [4] with respect to the
added work shifts, starting at shift 0. (III) Apply a deletion �lter [3, 4] on the
task instances assigned to the remaining shifts. This method gives an irreducible
cut since, in the last step, a deletion �lter is applied to a subset of task instances
that yielded an infeasible subproblem.

Algorithm 2 Shift-based method

1: let w = 0
2: while subproblem feasible do
3: add all task instances assigned to work shift w to the subproblem
4: solve subproblem
5: let w = w + 1
6: let w = 0
7: while subproblem infeasible do
8: remove all task instances assigned to work shift w from the subproblem
9: solve subproblem
10: let w = w + 1
11: apply a deletion �lter on the remaining task instances

The cuts obtained by applying Algorithm 2 are also used to derive additional
no-good cuts by creating permutations of the machine assignments, using the
fact that the machines are identical. For example, if one of the drillrigs cannot
execute two tasks instances, then neither can any of the other two drillrigs.

The second cut-strengthening method, presented in Algorithm 3, is applied
in all but the �rst iteration of the heuristic. This method is batch-based and de-
signed to e�ciently handle the addition of new batches as they are added by the
heuristic. It strengthens a cut by applying a deletion �lter on the task instances
of the current batch. Assignments from previous batches are already proven to
be feasible before the addition of the current batch, but because of dependencies
between the batches, the current one cannot be evaluated in isolation. However,
to sustain a moderate size of the subproblems to be solved during cut strength-
ening also in later iterations of the heuristic, only a few work shifts and their
task instances from previous batches are included. The risk of this is that the
strengthening can fail and the original cut needs to be used, but in practice, this
never became the case.
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Algorithm 3 Batch-based method

1: let B(curr) contain the task instances in the current batch
2: let w̃ be the earliest work shift of a task instance in B(curr)

3: add all task instances in work shifts w̃ − 4, . . . , w̃ to the subproblem
4: add all task instances B(curr) to the subproblem
5: if subproblem infeasible then
6: apply a deletion �lter with respect to the task instances in B(curr)

Problem speci�c cuts During the computational experiments, it was discov-
ered that the master problem was particularly weak with respect to one aspect
of the assignments and that many no-good cuts were required to reach feasibility
due to this. The aspect originates from the limited number of machines to use
for the tasks in batch 2. Speci�cally, if all task instances of two batches of batch
2 are scheduled within the same work shift, it is not possible to schedule all task
instances of a next batch 2 within this shift.

During the solution process, it is possible to keep track of the work shifts
that have been assigned two complete batches of batch 2. Let the set W̄ index
such work shifts and let f̃ and j̃ be the face and cycle of the second batch that
is currently scheduled. The problem-speci�c cut∑

t∈b2

∑
m∈Mt

xtf̃ j̃wm ≤ 4, w ∈ W̄,

ensures that, for each work shift with at least two batches of batch 2 already
scheduled, at least one task instance from the currently scheduled batch 2 is
assigned to another work shift.

4 Computational results

This section presents computational results from the implementation and eval-
uation of the following three solution methods.

� M-CP: Apply a CP solver directly on a monolithic model from previous
work. The model is described in Section 2.1.

� H-CP: Apply the priority-based heuristic and, in each iteration, use a CP
solver on an adaptation of the model in Section 2.1.

� H-LBBD: Apply the priority-based heuristic and, in each iteration, use the
LBBD scheme introduced in Section 3.

The evaluation measures that we use are computational times and the sum
of the makespans for the individual faces, henceforth simply referred to as
makespan. Important to note is that the only method that actually uses makespan
as the sole objective is M-CP, while both H-CP and H-LBBD include a priority
order, not as part of the mathematical model but through the heuristic. In ad-
dition, H-LBBD uses a slightly changed objective function as part of the LBBD
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scheme design. This means that for H-LBBD, the makespan is computed after
the solution is returned. In our comparison, M-CP is considered as the bench-
mark method, both because the method is exact and because the objective of
the model is the same as our measure for evaluating the quality of the schedule.
Furthermore, since M-CP stems from a re-implementation of a model in previous
work, it is also the best comparison we could make in this respect.

For the evaluations, we used 6 industrially relevant instances constructed
in dialogue with Boliden. These have been made publicly available and are de-
scribed in more detail in Section 4.1 together with a description of computational
settings. To evaluate the impact of the priority-based heuristic, each instance was
solved for three di�erent priority orders, denoted P1, P2, and P3. In P1, there is
an increasing priority from the �rst to the last face, and for the other two, there
is a randomly chosen order.

The �rst set of computational results, presented in Section 4.2, provides a
comparison between H-CP and H-LBBD to evaluate the impact of applying the
LBBD scheme instead of a CP solver in each iteration of the heuristic. This
comparison is direct in terms of only evaluating the use of the LBBD scheme.
Since the results of H-LBBD are much stronger than those of H-CP, the latter is
omitted from further comparisons. The second set of computational results gives
a comparison between H-LBBD and M-CP and is presented in Section 4.3.

4.1 Instances and computational settings

All our instances are constructed for a given mine topology that de�nes the
distances between the di�erent faces and for a given machine park. Each instance
is characterised by the number of parallel excavation faces and the number of
excavation cycles at each face. They have been encoded with #F:#C, e.g an
instance with 6 parallel faces and 4 cycles at each face is encoded 6F:4C, in
line with notation used previous work [11]. Most of our instances consist of 24
cycles in total, since this gives a realistic instance size according to Boliden. An
instance with a speci�c characteristic is 18F:XC that has a total of 24 cycles,
where faces 1 to 12 have one cycle and 13 to 18 have two cycles. Since the choice
of the starting task at each face has a large impact on the objective value, we
use the same starting task, drilling, for all faces and all instances.

The number of task instances that a problem instance contains is #F ×
#C × 10. For example, 6F:4C include 6 × 4 × 10 = 240 task instances. The
machine park used in our instances consists of seven di�erent kinds of machines,
2 drillrigs, 2 chargers, 2 watering trucks, 5 loaders, 3 scalers, 2 shotcreters and
4 bolters. Note that the choice of machine for each task instance also yields
additional decisions to be made as part of the scheduling.

The CP models were solved by IBM ILOG CP Optimizer version 20.1.0.0 and
the MIP model was solved using Gurobi Optimizer version 9.1.2. All tests were
run on a PC using an Intel i7 2600k processor at 4.1 GHz and 16 GB of RAM. The
industrially relevant instances have been generated in dialogue with Boliden and
made publicly available at https://gitlab.liu.se/eliro15/underground_mining_
instances where further details are found.
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4.2 Comparison between H-LBBD and H-CP

The �rst set of experiments is made to determine which scheduling_method
yields the best performance of the heuristic. Since the only di�erence between
the methods H-CP and H-LBBD is how the scheduling is done in each iteration
of the heuristic, it is possible to make an individual comparison for each pair of
instance and priority order, providing 18 such pairs to evaluate.

Initial tests revealed that it would not be possible to let the CP solver run
to optimality in each iteration of the heuristic, and for this reason we needed to
put a time limit on each iteration. Since the initial tests also indicated that the
LBBD scheme was consistent in producing reasonable schedules in each iteration,
without time limits and with a zero-valued MIP-gap in the master problem, we
decided to record the time used by H-LBBD in each iteration of the heuristic
and then give the CP solver the same amount of time in each iteration. The
results from the comparisons with these time limits are shown in Table 1.

Instance -priority Time [s] H-CP H-LBBD

6F:4C -P1 214 - 71191

-P2 418 79718 72156

-P3 221 - 71191

10F:3C -P1 1005 114291 98046

-P2 1281 112792 96375

-P3 1646 98595 97683

12F:2C -P1 1237 95777 83321

-P2 1390 91255 85279

-P3 835 93228 82722

F15:C2 -P1 2295 141988 116935

-P2 2225 118584 119523
-P3 2651 128531 119784

18F:XC -P1 1159 99879 98917

-P2 1034 103966 99829

-P3 1092 105670 104111

24F:1C -P1 2819 134634 126304

-P2 2017 132404 125704

-P3 2767 131204 127434

Table 1. The makespan (or �-� when no solution was found) for the schedules produced
by H-CP and H-LBBD, respectively, when using the same total computational time
for an instance-priority pair

The results in Table 1 show that H-LBBD yields a better makespan than
H-CP for all instances except 15F:2C with priority P2. In particular, H-LBBD
excels when the ratio of cycles to faces is high. Furthermore, when comparing the
results for di�erent priority orders for the same instance, it can be noted that

109



16 E. Lindh, K. Olsson and E. Rönnberg

the priority order has an impact on the makespan. Sometimes the di�erences
are signi�cant, especially for H-CP. For H-LBBD the results are more consis-
tent. The impact of the priority order is further discussed in Section 4.3 when
benchmarking with M-CP. Our conclusion from the �rst set of experiments is
that H-LBBD performs better than H-CP and that we therefore can omit the
latter in the further evaluations.

4.3 Comparison between H-LBBD and M-CP

The comparison between H-LBBD and M-CP is multifaceted since, even if in
both cases we are interested in �nding a solution with a short makespan quickly,
both the methods and the objectives di�er. Objective-wise, H-LBBD takes the
priority order into account, while M-CP does not. However, in the comparison,
the result is evaluated with respect to the makespan, that is, the objective used
in M-CP. This means that for one result from M-CP, we have three results from
H-LBBD to compare with and this comparison needs to include an analysis of
the impact of taking the priority order into account in H-LBBD.

Method-wise, H-LBBD is a heuristic while M-CP is an exact method. How-
ever, as will be apparent in the results, the CP solver is far from capable of
�nding an optimal solution, and for this reason it becomes more reasonable to
treat also M-CP as a heuristic in the sense that it is evaluated by the makespan
produced after a certain time limit. For this purpose, we introduce two time
limits. The �rst is LBBD max time limit, which is the maximum time spent by
H-LBBD for the priority order that required the longest computational time,
hence giving an advantage to M-CP in the evaluation. The second one, Bench-
mark time limit, is chosen to be signi�cantly longer than the �rst to, if possible,
provide a really short makespan to use as benchmark when assessing the impact
of the priority order. The results are displayed in Table 2.

We begin by comparing H-LBBD with M-CP for the LBBD max time limit.
Most striking is that for all instances, the makespans of the schedules from H-
LBBD are, irrespective of the priority order used, shorter than the makespan of
the corresponding schedule produced by M-CP. We interpret this as an e�ect of
H-LLBD being a much more e�cient solution method for the problem, and this
to a magnitude that makes the priority order irrelevant. Comparing the relative
improvement of the makespan between M-CP and H-LBBD for the priority order
with the best makespan gives a relative di�erence of 22%, 6%, 2%, 14%, and 2%,
respectively, for the instances solved by both methods.

When comparing the makespans for the LBBDmax time limit and the Bench-
mark time limit for M-CP, we note that there is an improvement when allowing
the CP solver additional computational time. For 6F:4C it makes the di�erence
between �nding a feasible solution and not, and in this case the time limit was
increased by a factor of about 9. For the other instances, the relative improve-
ments of the makespans are 5.3%, 1.8%, 0.04%, 6.7%, and 0.1%, respectively, for
the time limit being increased by a factor of 3, 3, 3, 5, and 3, respectively.

The �nal comparison is between H-LBBD and M-CP with the Benchmark
time limit. There we see that for instance 15F:2C with priority P2 and P3, the
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Instance Eval. measure Method

M-CP H-LBBD

Benchmark LBBD max P1 P2 P3
time limit time limit

6F:4C Makespan 83004 - 71191 72156 71191

Time [s] 3600 418 214 418 221

10F:3C Makespan 117249 123795 98046 96375 97683
Time [s] 5400 1646 1005 1281 1646

12F:2C Makespan 86577 88200 83321 85279 82722

Time [s] 5400 1390 1237 1390 835

15F:2C Makespan 119351 119863 116935 119523 119784
Time [s] 7200 2651 2295 2225 2651

18F:XC Makespan 107524 115294 98917 99829 104111
Time [s] 5400 1159 1159 1034 1092

24F:1C Makespan 126924 128273 126304 125704 127434
Time [s] 7200 2819 2819 2017 2767

Table 2. The makespan (or �-� when no solution was found) for the schedules produced
by M-CP and H-LBBD, respectively, for di�erent time limits

makespan is longer in the schedules from H-LBBD than in the schedule from M-
CP. However, the relative di�erences are only about 0.1% and 0.3%, respectively,
after about 3 times more computational time. For all other instances and priority
orders, H-LBBD still provides the best makespans � despite the much longer
runtimes for M-CP. Again, this means that the e�ciency of the LBBD scheme
dominates that of the e�ect of taking the priority order into account. Further
analysis of the impact of priority orders is therefore left for future work. As a
preliminary result in this direction, Figure 2 illustrates the schedules from H-
LBBD for instance 10F:3C with priority order P1 and P2, respectively. More
illustrations of this kind are found in [6].

5 Concluding remarks

This paper addresses how to formulate and solve a short-term scheduling problem
for a cut-and-�ll mine. To enable a high degree of control on the scheduling
output, a priority-based heuristic that adapts to di�erent face priorities was
proposed. Note that since the distances between di�erent faces of a mine are
not the same, the priority order is expected to have an impact on the best
possible makespan that can be obtained. The heuristic was integrated with an
LDDB scheme to solve the partial scheduling problems in each iteration of the
heuristic. To enable an e�cient LBBD scheme, a new objective for the problem
was introduced. This objective indirectly aims for a short makespan but it uses
the shift structure of the problem instead of considering the end times of tasks.
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18 E. Lindh, K. Olsson and E. Rönnberg

Fig. 2. Schedules for instance 10F:3C for the priority order P1 (order:
1,2,3,4,5,6,7,8,9,10) and P2 (order: 4,9,6,5,1,8,3,2,7,10), respectively. Colours are:
turquoise for drillrigs 1�2, red for chargers 1�2, green for watering trucks 1�2, blue
for loaders 1�5, lime green for scalers 1�3, purple for shotcreters 1�2, grey for bolters
1�4, and pink for afterlag
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The e�ect of including a priority order was evaluated by comparing with the
makespans of schedules generated without considering a priority. The results
showed that � thanks to computational e�ciency � our schedules had a shorter
makespan than that obtained when applying a CP solver on a monolithic CP
model aiming only at minimising the makespan. Note that this was almost always
the case also when the CP solver was given signi�cantly longer computational
times. The conclusion we draw from this is that applying an approach like the
one we propose shows great promise for this type of scheduling problem and that
the impact of including priorities needs to be further studied.

In other future work, it is relevant both to improve the modelling of the
problem and to continue the development of more e�cient solution methods. In
particular, the heuristic can be further developed and so can the LBBD scheme.
For the latter, there is potential to improve the master problem formulation and
the cut-strengthening procedures.
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