
Solving an Industrial Oven Scheduling Problem
with a Simulated Annealing Approach

Marie-Louise Lackner, Nysret Musliu, and Felix Winter

Christian Doppler Laboratory for Artificial Intelligence and Optimization for
Planning and Scheduling, DBAI, TU Wien, Favoritenstraße 9, 1040 Vienna, Austria

marie-louise.lackner@tuwien.ac.at, nysret.musliu@tuwien.ac.at,
felix.winter@tuwien.ac.at

1 Introduction

In times of a climate crisis, reducing industrial energy consumption has become
all the more important. In this paper, we are concerned with the hardening
process of electronic components in specialised heat treatment ovens, a highly
energy-intensive task. The energy consumption of this process can be reduced
by grouping compatible jobs into batches for simultaneous processing.

Recently, we formalized this problem as the Oven Scheduling Problem (OSP),
an NP-hard parallel batch scheduling problem [4]. The key task of the OSP is to
create a feasible assignment of jobs to batches and to find an optimal schedule
of these batches on a set of ovens. The creation of batches must be done in
such a way that jobs in the same batch have the same attribute as well as
compatible minimal and maximal processing times. Moreover, the scheduling
of batches needs to respect the jobs’ earliest start times, their respective sets
of eligible ovens as well as oven capacities. Furthermore, availability times of
ovens as well as attribute-dependent setup times between batches need to be
considered. The optimization goal of the OSP is to minimize a linear combination
of three objectives: cumulative batch processing time, tardiness and setup costs.
For a more formal definition of the OSP, we refer the reader to our previous
publication [4].

A wealth of scientific papers has investigated batch scheduling problems
throughout the past three decades (see. e.g., the surveys [6, 7, 2]). The prob-
lems studied so far in the literature typically minimize objectives related to
makespan, tardiness or lateness. The OSP differs from these problems as one of
its main objectives is to minimize the cumulative batch processing time across
all ovens–which is directly related to the energy costs of running the ovens.

In our recent publications introducing the OSP [4, 5], we provided a bench-
mark set consisting of 80 instances of different sizes (up to 100 jobs), developed
CP and ILP models and performed an extensive experimental evaluation of
our proposed exact solution methods. Moreover, we developed theoretical lower
bounds on the optimum value.

To increase the practical applicability of our previously developed methods
for the OSP, two goals need to be pursued. Most of the large benchmark instances

115

2 M.-L. Lackner et al.

with 50 or 100 jobs could not be solved to optimality within the runtime limit of
one hour. Firstly, we thus need to improve the solution quality for large instances.
Secondly, in practice one often needs to obtain solutions – of not necessarily
optimal, but sufficiently good quality – in shorter time than one hour, ideally
in just a couple of minutes. In order to fulfill both of these goals, we propose
a metaheuristic local search approach based on simulated annealing which we
briefly describe in the following section. In Section 3, we then evaluate the results
of our preliminary experiments with this new solution approach for the OSP.

2 The Simulated Annealing Approach

Simulated annealing is a metaheuristic local search technique targeted at finding
an approximation of the global optimum for optimization problems with large
search spaces. The name of this technique comes from the process of annealing
in metallurgy and was introduced by Kirkpatrick, Gelatt and Vecchi [3]. Since,
simulated annealing has been successfully employed to solve a variety of real-
world optimization problems, including batch scheduling problems (see, e.g., [1]).

In the following, we briefly describe the core concept of simulated annealing
and our implementation of this technique for the Oven Scheduling Problem. The
simulated annealing algorithm starts off at an initial temperature and with an
initial solution that we obtain using the construction heuristic we presented in
our previous work [4, 5]. At every iteration step, one of four neighborhood types
is chosen uniformly at random, and a candidate solution in this neighborhood is
chosen by applying a random move to the current solution. The four neighbor-
hood moves we propose are the following: (i) Move Job to Batch: select a job
and add it to an existing batch that is compatible, (ii) Create New Batch from
Job: select a job, remove it from its current batch, create a new batch consisting
of this single job and insert this batch somewhere in the current schedule, (iii)
Move Batch: select an entire batch and insert it at a new position of the current
schedule, (iv) Swap Consecutive Batches: select two consecutive batches on the
same oven and swap them.

The candidate solution obtained in this way is accepted if its solution cost
is an improvement over the current solution. In case the candidate solution is a
deterioration of the current solution, it is also accepted if the acceptance crite-
rion is met. This acceptance criterion depends both on the current temperature
and the relative size of the deterioration; we use the metropolis criterion [3] as
acceptance function. After this step, the temperature is reduced according to a
cooling scheme. This procedure is iterated until the runtime limit is reached and
returns the best solution found.

3 Preliminary Experimental Evaluation

In order to assess the viability of the proposed local search approach using sim-
ulated annealing, we implemented a preliminary version of the algorithm. Based
on manual parameter tuning, we set the initial acceptance rate to 50% and the

116

Solving the Oven Scheduling Problem with Simulated Annealing 3

minimum temperature to 10−10. For a given instance, the initial temperature is
chosen so that moves are accepted with probability equal to the initial accep-
tance rate at the beginning of the local search process. This is done by creating a
sample of moves from the initial solution. Moreover, instead of using a fixed cool-
ing rate, the cooling scheme is chosen adaptively for every run of the algorithm:
the cooling is done in such a way that the minimum temperature is reached at
the same time as the runtime limit. This is ensured by calculating a new, re-
duced temperature after every iteration step, based on the current average time
required per iteration. We performed a series of experiments on our benchmark
set [4] consisting of 80 randomly generated instances.1 The experiments were run
on single cores, using a computing cluster with 10 identical nodes, each having
24 cores, an Intel(R) Xeon(R) CPU E5–2650 v4 @ 2.20GHz and 252 GB RAM.

exact methods simulated annealing
runtime limit per run 1 hour 30 seconds 5 minutes

best results 54 56 77
provably optimal results 37 36 37

Table 1: Overview of the preliminary computational results on the benchmark
set consisting of 80 instances.

An overview of our preliminary results can be found in Table 1. In this table,
we compare the quality of solutions obtained with the exact methods presented in
our previous work [4] with those obtained with the simulated annealing approach.
Our previous experiments (presented in [4]) were run in the same computing
environment as the ones in this paper. For the exact methods, we use the overall
best (minimal) solution cost per instance obtained in [4]. To be precise, this
is the best result obtained by any of the 53 exact methods2 within a runtime
limit of one hour. For the simulated annealing approach, we chose to run our
algorithm 5 times per instance and use the best result for the comparison. This
repetition can be advantageous due to the non-deterministic nature of simulated
annealing. We considered two runtime limits: 30 seconds per run (2.5 minutes
in total) and 5 minutes per run (25 minutes in total).

The row labeled “# best results” in the table displays the number of instances
for which overall best solutions could be achieved (out of 80). The row labeled “#
provably optimal results” shows the number of obtained optimal solutions, i.e.,
solutions for which one of the exact solutions methods could prove optimality. As
one can see, running the simulated annealing approach with merely 30 seconds
1 The benchmark set is publicly available at https://cdlab-artis.dbai.tuwien.ac.at/

papers/ovenscheduling/OSPrandominstances/.
2 This number results from the combination of different models, solvers and search

strategies as well as a warm-start option.

117

https://cdlab-artis.dbai.tuwien.ac.at/papers/ovenscheduling/OSP random instances/
https://cdlab-artis.dbai.tuwien.ac.at/papers/ovenscheduling/OSP random instances/

4 M.-L. Lackner et al.

per run already allows us to obtain a similar solution quality as with the best
exact methods and a runtime limit of one hour. Increasing the runtime of the
simulated annealing approach to 5 minutes per run, leads to best results for
nearly the entirety of the benchmark set (77 of 80 instances). Furthermore,
regarding the instances for which provably optimal solutions could be found by
the exact methods, the simulated annealing approach with 5 minutes runtime
also finds optimal solutions for every one of these 37 instances; with 30 seconds
runtime, optimal solutions can be found for all except one of these instances.

We note that the compared methods were all capable of finding solutions for
the entire benchmark set (80 instances). Moreover, both the exact methods and
the simulated annealing approach were always capable of improving the (initial)
solution provided by the construction heuristic [4].

In Table 2, we take a closer look at the results obtained for the 43 instances of
the benchmark set for which none of the exact methods could prove optimality
within the runtime limit of one hour. For every one of these instances, we com-
pute the relative improvement ri in % of the simulated annealing approach over
the best exact approach. For the simulated annealing approach, we take the best
result of 5 runs each having a runtime limit of 5 minutes. In this table, we group
the instances by their number of jobs (20, 50 or 100 jobs) and by the value of the
relative improvement. Overall, the improvement ri is between -0.05% and 1%
for 32 (of 43) instances: for 15 instances, the simulated annealing approach finds
solutions of the same quality as the exact approach (ri = 0), for another 15 in-
stances, simulated annealing delivers slightly better results (ri ∈ (0, 1]), and for
2 instances slightly worse results (ri ∈ [−1, 0)). For the remaining 11 instances,
an improvement of the solution cost by more than 1% was possible, for 7 of which
the improvement was larger than 10%. Note that for none of the 43 instances,
the solution quality of the simulated annealing approach was significantly worse
than the best exact result: there are no instances with ri < −1%.

It is important to note that the size of the instance has a major impact
on the improvement made by the simulated annealing approach: for all of the
smaller instances with 20 jobs, the solution quality could not be improved; for
the instances with 50 jobs, an improvement was possible for 7 out of 17 instances;
for the instances with 100 jobs, the solution quality was improved for 19 out of
20 instances. A possible explanation is that the solutions found by the exact
methods for the smaller solutions might by optimal–even though no optimality
proof could be delivered within the runtime limit of one hour–or very close to
the global optimum.

4 Future Work

The preliminary results obtained with the proposed simulated annealing ap-
proach on our benchmark set already look promising. As a next step, we plan to
configure our algorithm by using automated parameter configuration tools for
parameters such as the probabilities of neighborhoods, initial acceptance rate

118

Solving the Oven Scheduling Problem with Simulated Annealing 5

instances with relative improvement ri
jobs # instances [−1, 0) = 0 (0, 1] (1, 10] > 10 avg ri max ri

20 6 0 6 0 0 0 0% 0%
50 17 1 9 6 0 1 0.65% 10.45%
100 20 1 0 9 4 6 7.15% 28.01%
total 43 2 15 15 4 7 3.58% 28.01%

Table 2: Overview of the relative improvement ri (in %) achieved by the sim-
ulated annealing approach over the best exact approach. Numbers in bold font
indicate instances for which an improvement over the best exact result could be
achieved. Results are only displayed for the 43 benchmark instances for which
no exact method could deliver an optimality proof within the runtime limit of
one hour.

and final temperature. Then we plan to conduct an additional evaluation of our
simulated annealing approach, including experiments with a longer runtime.

In practice, instances can be even larger than those included in our bench-
mark set; instances consisting of up to 1500 jobs can be expected. We will there-
fore also conduct experiments on larger instances than those in our benchmark
set. Moreover, we will include the lower bounds obtained by the exact meth-
ods [4] as well as the theoretical lower bounds [5] in this evaluation in order to
provide a more precise assessment of the solution quality. The theoretical lower
bounds, which can be calculated in a few seconds, could also be integrated in a
stopping criterion for the simulated annealing approach to reduce the runtime.

Another promising line of research would be to investigate adaptive neighbor-
hood selection. In the current formulation of our simulated annealing approach,
the probability of each of the four neighborhoods is constant throughout the
solution process. It could however be advantageous to adapt these probabilities
based on the current state of the search process. Moreover, it would be interesting
to investigate domain-independent hyper-heuristic approaches.

Acknowledgments The financial support by the Austrian Federal Ministry for
Digital and Economic Affairs, the National Foundation for Research, Technology
and Development and the Christian Doppler Research Association is gratefully
acknowledged.

119

Bibliography

[1] Damodaran, P., Vélez-Gallego, M.C.: A simulated annealing algorithm to
minimize makespan of parallel batch processing machines with unequal job
ready times. Expert systems with Applications 39(1), 1451–1458 (2012)

[2] Fowler, J.W., Mönch, L.: A survey of scheduling with parallel batch (p-
batch) processing. European Journal of Operational Research 298(1), 1–24
(Apr 2022)

[3] Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by Simulated An-
nealing. Science 220(4598), 671–680 (May 1983). https://doi.org/10.1126/
science.220.4598.671

[4] Lackner, M.L., Mrkvicka, C., Musliu, N., Walkiewicz, D., Winter, F.: Mini-
mizing Cumulative Batch Processing Time for an Industrial Oven Schedul-
ing Problem. In: 27th International Conference on Principles and Practice
of Constraint Programming (CP 2021). Leibniz International Proceedings in
Informatics (LIPIcs), vol. 210, pp. 37:1–37:18. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, Dagstuhl, Germany (2021)

[5] Lackner, M.L., Mrkvicka, C., Musliu, N., Walkiewicz, D., Winter, F.: Exact
methods and lower bounds for the oven scheduling problem. Under review
(2022), https://arxiv.org/abs/2203.12517

[6] Mathirajan, M., Sivakumar, A.I.: A literature review, classification and sim-
ple meta-analysis on scheduling of batch processors in semiconductor. The
International Journal of Advanced Manufacturing Technology 29(9-10), 990–
1001 (2006)

[7] Potts, C.N., Kovalyov, M.Y.: Scheduling with batching: A review. European
Journal of Operational Research 120(2), 228–249 (Jan 2000)

120

https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1126/science.220.4598.671
https://arxiv.org/abs/2203.12517

	Solving an Industrial Oven Scheduling Problem with a Simulated Annealing Approach

