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Abstract. Earth observation satellites (EOS) are satellites equipped
with optical sensors that orbit the Earth to take photographs of specific
areas at the request of users. With the development of space technol-
ogy, the number of satellites increases continuously. Yet still, the num-
ber of satellites cannot meet the explosive growth of applications. Thus,
scheduling solutions are required to satisfy requests and obtain a high
observation efficiency. While the literature on multi-satellite scheduling
is rich, most of the solutions are centralized algorithms. However, due
to their cost, EOS systems are often co-funded by several agents (e.g.,
countries, companies, or research institutes) and central solutions require
that these agents will share their requests for observations with others.
To date, there is no solution for EOS scheduling that protects the pri-
vate information of the interested parties. In this study, we model the
EOS scheduling problem as a distributed constraint optimization prob-
lem (DCOP). This modeling enables generating timetables for the satel-
lites in a distributed manner without a priori sharing private information
of the users with some central authority. For solving the resulting DCOP,
we use the Distributed Stochastic Algorithm (DSA), which is a simple
DCOP algorithm that is known to produce efficient solutions in a timely
manner. The modeling together with the solving of the resulting DCOP
constitute our new solution method, which we term Distributed Satel-
lite Timetable Solver (DSTS). Experimental evaluation reveals that the
DSTS method provides solutions of higher quality than a commonly-
used Greedy algorithm.

Keywords: Earth observation satellites · Satellite timetables · DCOP.

1 Introduction

Earth observation satellites (EOSs) are sensor-equipped satellites that are des-
ignated to take photographs of special areas at the request of a user [39]. The
satellites perform a cycle of orbits around the Earth over a period of several days.
Each orbit slightly changes with respect to the preceding one but its trajectory is
cyclic in the sense that the satellite recovers its initial position after a predefined
number of orbits. Furthermore, a full cycle enables the satellite to view each
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area of the planet. Most EOSs operate at low altitudes with the orbital periods
varying from dozens of minutes to several hours. However, it takes several days
for a single EOS to complete a full cycle and view the whole area of the Earth.
During the course of one particular orbit, a satellite can take several photographs
by rotating itself between consecutive shots. After capturing the photographs,
the acquired data is stored in the on-board memory and transferred to a ground
station when the satellites are in a feasible transferring range [49].

EOSs have been extensively employed in a wide range of tasks, such as Earth
resource exploration, natural-disaster surveillance, environmental monitoring,
and defense missions [6]. The demand for EOS services has risen over time due
to some unique advantages, including an expansive coverage area, long-term
surveillance, accurate and effective information access, and unlimited airspace
borders [43].

With the development of space technology, the number of satellites contin-
uously increases [43]. Yet, the number of EOSs still cannot meet the demand
due to an explosive growth of applications that require observations. Conse-
quently, scheduling solutions are needed to satisfy more requests and obtain a
high observation efficiency. In particular, multi-satellite systems require dedi-
cated scheduling solutions [3].

Due to their cost, EOS systems are often co-funded by several agents (e.g.,
countries, companies, or research institutes). Once constructed and made oper-
ational, the common property resource must be exploited and shared between
the partners. Each party wants to fulfill its requirements for observations and
a timetable should be developed to schedule all these requirements. Such a
timetable needs to be (a) efficient in the sense that the satellites are maximally
utilized with the highest priority tasks; and (b) considered fair by all parties [2].

While the literature on multi-satellite scheduling is rich, as summarized
in [43], most of the solutions are centralized algorithms that assume all the
requests reach a central entity that creates a timetable for them. Such solutions
are prone to privacy issues since EOSs can be used for defense and security
purposes and most of the parties do not want others to be informed of the way
they are using the satellites. This raises the need for distributed scheduling solu-
tions [35]. Since a given request can sometimes be satisfied by several satellites
in more than one of their orbits, the problem is not separable by satellite nor by
orbit. Instead, the scheduling process must be performed simultaneously for all
satellites and orbits considered.

Distributed constraint optimization problem (DCOP) [15,9] is a powerful
framework for representing and solving distributed combinatorial problems. DCOPs
have been successfully applied in a variety of real-world problem domains, includ-
ing meeting scheduling [28], traffic-light synchronization [18], sensor networks [7],
and the Internet of Things [24]. Recently, Picard et al. [35] suggested the use
of DCOPs as a potential approach for dealing with EOS scheduling problems.
Following this, a DCOP-based solution has been proposed [34]. That work deals
with the problem of coordinating users having reserved exclusive orbit portions
and one central planner having several requests that may use some intervals of
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these exclusives. Their solution enables the exclusive users to independently plan
their own tasks; however, the rest of users’ tasks are still scheduled in a central
manner.

Contributions: Our paper goes one step further. We present a novel Dis-
tributed Satellite Timetable Solver that we name DSTS. The DSTS method
works in two phases – it starts by mapping the EOS scheduling problem to a
DCOP according to our new proposed modeling, and then it solves the DCOP
using a DCOP algorithm. The DSTS method is beneficial for two main reasons.
First, the EOS scheduling problem is distributed by nature, and as such, it can
be modeled and solved in a distributed manner, such as DCOP. In particular,
users do not need to a priori share their private information with some cen-
tral authority. Second, DCOP is a well-established model that provides a wide
palette of algorithms, as well as common metrics and simulation environments.
Specifically, our method is modular as it is not limited to a specific algorithm.

The rest of the paper is organized as follows. Section 2 provides an overview
of relevant existing studies. Section 3 includes formal definitions of the EOS
scheduling problem, which is at the focus of this study. Section 4 provides the
definition of DCOP and the DCOP modeling of the EOS scheduling problem.
An experimental evaluation is presented in Section 5, followed by the conclusions
in Section 6.

2 Related Work

A number of EOS scheduling solutions have been proposed. A detailed literature
review is presented in [43]. That review classifies the algorithms into four classes:
exact methods, heuristics, meta-heuristics, and machine learning based algo-
rithms. Exact methods can provide optimal or near optimal solutions but they
are limited to relatively small scale instances. Heuristic methods are employed
when exact methods cannot be used; these are further classified into construc-
tive heuristics and time-efficient heuristics. The methods are easily implemented
and have relatively short computational time. However, they are specifically de-
signed and there is no guarantee of solution quality. Meta-heuristics are general
procedures that find, generate, or select a search algorithm that may provide
a sufficiently high-quality solution to an optimization problem. Evolutionary
algorithms and single-point search algorithms are two main examples of this
category. Machine learning methods have been recently proposed for solving the
EOS scheduling problem. These include deep reinforcement approaches [44,17]
and competitive learning strategies [26]. The downside of such methods is the
requirement for large amount of data to provide good solutions.

All of the above are static solutions in the sense that all problem inputs
are given in advance. Another research direction deals with the requirement
for dynamic scheduling [41]. Some examples in which dynamic scheduling is
necessary include incoming emergency tasks [36], impact of clouds [40,42], and
impact of transition time between observations [45,46].
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Most of the known solutions for EOS scheduling problems are centralized
algorithms in which the assumption is that satellite constellations are shared
resources managed by a central mission control that receives all the requests
for observations and schedules them. Recently, a few distributed methods have
been proposed [25,4]. These works distribute the scheduling problem between
the satellites in attempt to provide rapid response to dynamic changes. How-
ever, such form of distribution does not deal with the privacy issue of the users.
In a pioneer work, Picard [34] investigates the use of multi-agent allocation tech-
niques for solving the EOS scheduling problem. One of the proposed techniques
is DCOP-based. It works under the assumption that some users (termed ex-
clusive users) have reserved exclusive orbit portions. A central planner collects
the requests of non-exclusive users and sends them to the exclusive users. The
exclusive users employ a distributed procedure that attempts to sequentially
schedule those requests, each time creating a DCOP instance in an attempt to
add a new request. In this case, the exclusive users retain their privacy while the
non-exclusive users still need to share their tasks with a central mission control
and thus lose their privacy. To the best of our knowledge, there are no studies
that fully distribute the problem among all users.

In order to obtain a fully distributed solution for all users, we suggest to
model the whole problem as a DCOP. A major benefit of modeling a problem
as a DCOP is that once modeled, the problem can by solved by a wide variety
of algorithmic approaches, either complete [31,32,11,48] or incomplete [50,8,20].
DCOPs are NP-hard. Therefore, the use of incomplete approaches is required
when solving medium- to large-scale problems.

3 Problem Definition

This section provides the core definitions of the problem we investigate. Consider
a set of independent users, each of which generates a set of observation requests.
Each request requires viewing a specific area for a specific duration of time, i.e., a
request for a specific latitude-longitude-altitude position (LLA) at a certain time
interval. These requests potentially yield several observation opportunities per
request. In order to define the set of opportunities for each request, the following
parameters are required: the LLA to observe, the satellite’s location (defined by
its orbit plan), and the attitude adjustment capabilities of the satellite’s camera.
A user can generate a set of observation opportunities for each of its requests
using these three parameters. Each such opportunity can be served by a specific
satellite at a specific time. The duration of an opportunity is determined by
the duration of the request with the addition of the setup time required by the
satellite. The extent of the setup time depends on the previous viewing angle
of the satellite before it attended to the opportunity at hand. Each user assigns
a certain utility, herein termed reward, to its requests. The goal is to find a
timetable in which the sum of rewards due to handled requests is maximal.
Based on the core definitions in [34], we present the following definitions.
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Definition 1 (Earth Observation Satellite Scheduling Problem). An
Earth Observation Satellite Scheduling Problem P is defined by a tuple

P =< S,U ,R,O >

where S is a set of satellites, U is a set of users, R is a set of observation
requests, and O is a set of observation opportunities for fulfilling the requests in
R.

Definition 2 (Satellite). A satellite s ∈ S is defined as a tuple

s =< OPs, κs, STs >

where OPs is the orbit plan of the satellite. κs ∈ N+ is the satellite capacity (i.e.
the maximum number of observations during its orbit plan). The transition time
between two given observations is STs : O ×O → R.

For simplicity, we assume that the timeline is divided into discrete steps; τ
denotes the time period index, see [43].

Definition 3 (User). A user u ∈ U is defined by its set of requests Ru ⊂ R.

Definition 4 (Request). A request r ∈ R is a tuple

r =< tstartr , tendr , ∆r, ρr, pr, ur, Θr >

where the request validity time window is tstartr ∈ T and tendr ∈ T , ∆r ∈ T is the
required observation duration, ρr ∈ R is the reward obtained once the request is
fulfilled, pr is the latitude-longitude-altitude position (LLA) to observe, ur ∈ U
is the requesting user, and finally, Θr ⊆ O is the list of opportunities to fulfill
the request.

Definition 5 (Opportunity). An opportunity is defined as a tuple

o =< tstarto , ∆o, ro, ρo, so >

where tstarto ∈ T is the opportunity start time, ∆o ∈ T is the opportunity du-
ration, ro is the request to which this opportunity contributes, ρo is the reward
that this opportunity will provide (it is based on ρr with modifications according
to the observation angle, weather conditions, etc.), so is the satellite on which
this opportunity can be scheduled.

Definition 6 (Solution). A solution to a EOS scheduling problem is a feasible
subset of opportunities M = {o ∈ O}, so there is at most one observation per
request, and the overall reward (i.e., the sum of the rewards of all scheduled
observations) is maximized:

argmax
M

∑
o∈O

ρoxo
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subject to
xo ∈ {0, 1} ∀o ∈ O (1)∑
o∈Θr

xo ≤ 1 ∀r ∈ R (2)

soi ̸= soj ∨ [intoi + STsij ] ∩ [intoj + STsji ] = ∅ ∀oi, oj ∈ M (3)

into := [tstarto , tstarto +∆o] (4)

where xo is the decision variable that defines whether opportunity o is included
in M or not. Equation 2 ensures at most one opportunity for each request is
included in the solution. Finally, Equations 3 and 4 avoid overlaps between op-
portunities, by verifying that the opportunities are either in different satellites
or their time intervals including transition time (into) do not overlap.

4 DCOP Modeling of the Problem

Now we model the problem as a DCOP. We first provide the formal definition
of a DCOP, followed by our proposed DCOP modeling of the EOS scheduling
problem. This modeling is the first phase of the proposed DSTS method.

4.1 DCOP Definition

A DCOP is a tuple < A,X , α,D,R >, where: A is a finite set of agents
A1, A2, ..., An; X is a finite set of variables X1, X2, ..., Xm; α : X → A maps
each variable to one agent; D is a set of domains D1, D2, ..., Dm, where each
domain Di consists of a finite set of values that can be assigned to variable Xi;
R is a set of relations (constraints), where each constraint C ∈ R is a function
C : Di1 ×Di2 × . . .×Dik → R+ that defines a non-negative cost for every pos-
sible value combination of a set of variables. A complete assignment consists of
assignments to all variables in X . An optimal solution to a DCOP is a complete
assignment of minimal cost.

The advantage of DCOP representation over the classical constraint opti-
mization problems is in the ability to solve the problem in a distributed manner.
DCOP researchers have proposed a wide variety of solution approaches, such
as search-based algorithms [10,31,48], logic programming [22], inference-based
algorithms [33], and other methods [30]. In all of these approaches, each agent
handles its own variables and exchanges messages with the other agents in order
to determine the final variable values. No centralized entity takes part in the
solving process.

In this work we used a search-based approach, specifically, the Distributed
Stochastic Algorithm (DSA) [50]. DSA is a standard incomplete DCOP algo-
rithm. This algorithm operates as follows. In each step, the state of every variable
(the current value assignment) is shared with its neighbors (the variables with
which it is constrained) by sending and receiving messages. After receiving the
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updated states of its neighbors, each agent decides whether to change the cur-
rent state of the variable in an attempt to reduce its costs – this decision is
the most fundamental step in DSA. If the agent cannot find a new value in its
domain to improve its current state, it has no reason to change its current value.
However, in case there is such a value that improves the state, the agent may
or may not change to the new value based on a stochastic scheme that prevents
scenarios of infinite alteration loops. The probability of parallelism, p, controls
how frequently neighboring variables can change their values. The p probability
is set as a parameter of the DSA algorithm. The algorithm stops its execution
after pre-defined number of iterations.

4.2 EOS Scheduling as a DCOP model

We first provide the mapping of the EOS scheduling problem onto a DCOP
model, and then present an example that illustrates the mapping. The mapping
is performed in the following manner: A user is mapped to an agent in the
DCOP: A := {u ∈ U} Each user maps its requests to variables in the DCOP:
X := {r ∈ R}. Because X = R, we use these notations interchangeably. The α
mapping is performed according to the set of requests Ru of each user u. The
domain D of each variable is defined by the set of available opportunities Θr to
fulfill the request r with the addition of the value 0. D : = {Θr ∪ {0} | ∀r ∈ R}.
Each value represents one available opportunity for this request. The additional
0 value represents situations in which this request cannot be fulfilled.

Two types of constraints are defined for each user for each of its variables:

1. A unary constraint assigns a cost for each value of the variable based on
the reward of the corresponding opportunity. DCOPs are commonly used as
minimization problems and require non-negative constraints. Accordingly,
we define the cost of opportunity o as follows:

costo = maxCost− ρo (5)

where maxCost is greater than the reward of any opportunity:

maxCost > max
o

ρo

Specifically, the cost of 0 value is maxCost. Thus, the algorithm will assign
a 0 only when there is no possibility to assign any of the opportunities, i.e.,
the request cannot be fulfilled.

2. Binary constraints are defined between two variables if there is overlap
between the opportunities they represent. Overlap occurs when the two op-
portunities are served by the same satellite and their schedule times overlap.
The cost of each combination of values is ∞ if there is overlap between the
opportunities that these values represent; otherwise, the cost is zero. The
setup time between the opportunities, as defined in the STs table of the
satellite, is considered when computing the overlap. The cost of the 0 value
is zero for any combination with the other variable’s values.
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(a) An EOS scheduling problem. S1 and S2 are two different
satellites, rectangles represent opportunities, and the color of
a rectangle relates to the request that the opportunity can
fulfill.

(b) The DCOP modeling of the above problem. A1, A2, and
A3 are the agents (users) and x1, . . . , x4 are the variables
(requests). The tables represent the constraints.

Fig. 1: An example of an EOS scheduling problem mapped to a DCOP.
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An example of an EOS scheduling problem and its DCOP modeling are shown
in Figure 1. Figure 1a depicts an EOS scheduling problem with two satellites (s1
and s2) and three users (u1, u2, and u3). User u1 has two requests: r1,1 and r1,2
each of which has two opportunities: o1,1,1 and o1,1,2 for r1,1 and o1,2,1 and o1,2,2
for r1,2. The second user, u2, has a single request, r2,1 with three opportunities:
o2,1,1, o2,1,2, and o2,1,3. The third user, u3, has a single request, r3,1 with a single
opportunity o3,1,1. In the figure, the opportunities are shown with their schedules
and the rewards.

Figure 1b describes the DCOP modeling of this problem. This DCOP con-
tains three agents (A1, A2, and A3) representing the users (U1, U2, and U3).
Four variables (x1, x2, x3, and x4) correspond to the four requests and their do-
mains are defined according to the number of opportunities that can fulfill each
request. The domain of x1 consists of three values: two values (1 and 2) for the
opportunities that can fulfill it and the 0 value for the option of not scheduling
this request. For the same reasons the domain of x2 has three values, the domain
of x3 has four values, and the domain of x4 has two values. Each variable has
a unary constraint that assigns a cost to each value. The cost of the 0 value is
always maxCost (maxCost = 100 in this example). The costs of the other values
are defined by Equation 5. For example, o1,1,1 has a reward of ρo = 20, so the
cost of value 1 of x1 is 80. Binary constraints are defined between requests that
their opportunities overlap. For example, there is a constraint between x1 and x3

because o1,1,1 and o2,1,1 are scheduled at the same time and on the same satel-
lite (s1). The cost of the combination is ∞. The other combinations have zero
cost since there are no conflicts between these potential opportunities. Both con-
straint types are illustrated in the tables. The unary constraints tables contain
rows for each of the opportunities and an additional row for the 0 value. Each
row contains a single value: the unary cost of this opportunity. For example, the
unary constraint table of X1 contains three rows (two for the two opportunities
and one for the 0 value) with the value 100 in the first row for the 0 value, 80
in the second row as the cost value of o1,1,1 and 75 in the third row as the cost
value of o1,1,2. The binary constraints are illustrated by two-dimensional tables
that are linked to an arc that connects two variables. Each cell in the tables
represents the possibility of overlap between two opportunities. For example, in
the binary constraints table of x1 − x3, all the cells have zero value, except for
the cell that represents the combination of the o1,1,1 and o2,1,1 opportunities;
that cell has the ∞ value since only this combination generates an overlap.

5 Evaluation

We first describe our experimental setup (Section 5.1) and then the obtained
results (Section 5.2).

5.1 Experimental Setup

In order to evaluate DSTS, we generated EOS scheduling problems. For the first
phase of DSTS, we mapped the generated problems into DCOPs, as described
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in Section 4.2. For the second phase of DSTS, in which the resulting DCOP
model should be solved by some DCOP algorithm, we used the DSA algorithm
(as detailed in Section 4.1). DSA is suitable for our purposes for several rea-
sons. First, DSA has a low communication and computation overhead, which is
required when dealing with problems with hundreds of variables. Second, DSA
operates simultaneously by all agents with no pre-defined ordering or structure1,
which provides some sense of fairness.

We compare our DSTS method to a greedy benchmark algorithm (denoted
Greedy), which is used by most satellite and constellation operators [5]. Greedy
sorts all opportunities in increasing order according to their start time and then
by their reward (in decreasing reward order). Then, for each opportunity in this
sorted list, if there is a free slot for it on its satellite then it is scheduled and all
other opportunities of the same request are deleted; otherwise, this opportunity
is deleted.

Following [34], we generated two sets of experiments:

1. Highly conflicting problems: small-scale problems (5 minutes planning
horizon) with 3 satellites, 8 users emitting 2 to 20 requests each (|Ru| =
2, 4, . . . , 20), and 10 observation opportunities per request. The requests va-
lidity time window varied in the range [10 : 20] and its duration was set to
τ = 5, with reward ρo = [10 : 50] meaning a reward was sampled uniformly
at random between 10 and 50. This set of problems yields many overlaps
between observation opportunities, thus it produces tight problems.

2. Realistic problems: large-scale problems in a 6-hour planning horizon. We
generated instances with 8 satellites, 6 users emitting 10 to 100 requests each
(|Ru| = 10, 20, . . . , 100), and 5 observation opportunities per request. The
requests validity time window varied in the range [40 : 60] and its duration
was set to τ = 20, with reward ρo = [10 : 50]. This set of problems has many
observation opportunities (up to 3000) but with less overlaps between them
(a sparse setting).

We generated 100 instances of each setting, which resulted in a total of 2000
generated problems. All experiments were performed on the ‘AgentZero’ simu-
lator [27].2 All experiments were run on a standard laptop (Lenovo T14 with
Intel(R) Core(TM) i7-10610U CPU running at 1.80GHz) with Win10 OS and
took a few minutes in total.
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Fig. 2: Rewards of highly conflicting problems

5.2 Experimental Results

We first examined the rewards of highly conflicting problems. Figure 2 presents
a comparison of DSTS and Greedy. We used the DSA algorithm to solve
the DCOP. Specifically, we used the DSA-B version [50] with three different
p values, p = {0.5, 0.7, 0.9}, and ran it for 10 iterations. Axis x presents the
number of requests, from 16 (eight users with two requests each) to 160 (eight
users with 20 requests each). Axis y presents the sum of the rewards over all
scheduled requests.

For a low number of requests the results of the two compared methods are
similar, but for a high number of requests DSTS (using DSA with p = 0.9)
outperforms Greedy. The best results for DSTS are obtained with p = 0.9.
These findings are consistent with known results regarding the probability of
parallelism in DSA [50]; higher parallelism usually leads to higher quality solu-
tions until a ‘phase transition’ is reached, after which the solution quality drops
drastically. In particular, Zhang et al. [50] showed that for the DSA-B version
the phase transition commonly occurs when p > 0.9, in consistence with our
results.

1 Some DCOP algorithms like SyncBB [15] and AFB [11] maintain a pre-defined or-
dering of the agents, while others, such as DPOP [32] and BnB-ADOPT [48], operate
on a tree structure.

2 AgentZero is a Java-based programming framework for research and implementa-
tion of multi-agent problems, and particularly DCOPs. It enables to generate var-
ious types of multi-agent problems, test distributed algorithms, and collect various
performance statistics.
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Table 1 shows the average number of messages exchanged during the run of
DSTS using DSA with p = 0.9; Greedy is a centralized algorithm, thus it does
not exchange messages. Table 2 compares the run-times of DSTS (using DSA
with p = 0.9) and Greedy. As can be seen, DSTS is more affected by the size
of the problem. Yet, it is still very fast (less than 100 milliseconds for the largest
problems in this set).

Requests 16 32 48 64 80 96 112 128 144 160
DSTS 327 1782 5349 11390 19758 30054 42813 56748 73287 92281

Table 1: Number of messages in highly conflicting problems

Requests 16 32 48 64 80 96 112 128 144 160
DSTS 0.33 0.92 1.8 3.92 8.6 16.3 24.2 36 52 97
Greedy 0.15 0.12 0.13 0.16 0.22 0.32 0.36 0.42 0.49 0.69

Table 2: Run-time of highly conflicting problems (milliseconds)

Next, we examined realistic problems. We used the DSA algorithm to solve
the DCOP with the same three p values as before. The results are displayed in
Figure 3. Axis x presents the number of requests, from 60 (six users with ten
requests each) to 600 (six users with 100 requests each). Again, axis y presents the
sum of the rewards over all scheduled requests. Here, all three versions of DSA
obtain similar rewards. However, these rewards are ∼ 6% better than those of
Greedy . These findings can be explained by the relative sparsity of constraints
in this set, which results in problems that are more easily solved by both Greedy
and the various DSTS versions. Still, DSTS outperforms Greedy, since even
in such sparse settings there are a few conflicts that Greedy fails to resolve due
to its simplistic and obviously greedy nature.

Table 3 shows the average number of messages exchanged during the run of
DSTS using DSA with p = 0.9 and Table 4 presents the run-time comparison
with Greedy. Here, the run-time of DSTS is only slightly higher than that of
Greedy. Note that realistic problems produce less messages and run faster than
the conflicting problems (cf. Tables 1 and 2); this further indicates that density
is an extremely important factor. Another conclusion that can be drawn from
these results is that due to their sparseness, realistic problems of much larger
sizes (in terms of numbers of requests) could be solved in practice using DSTS.

6 Conclusions

In this work we proposed DSTS, a novel method that models EOS scheduling
problems as DCOPs and solves them using standard DCOP algorithms. Our
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Requests 60 120 180 240 300 360 420 480 540 600
DSTS 18.6 77.7 181.5 321.4 514.6 765 1056 1393 1817 2283

Table 3: Number of messages in realistic problems

experiments reveal that DSTS fastly solves the EOS scheduling problems and
provides higher quality solutions than the Greedy benchmark algorithm cur-
rently used.

Modeling the EOS scheduling problem as a DCOP is natural since the prob-
lem is inherently distributed. Moreover, by applying an algorithm with no pre-
defined ordering or structure, such as DSA, all users “have the same starting
point” when participating in the solution process, which is considered fair [1]. It
should be noted that even though the users do not need to a priori share their
private information with some central authority, some private information may
be leaked during the DCOP solving process [29,12]. In situations where privacy
is an important issue, one may resolve to using a privacy-preserving DCOP al-
gorithm in phase two of DSTS. One may choose a complete privacy-preserving
algorithm (e.g., [23,13]) or preferably an incomplete one (e.g., [38,14]) for appli-

Requests 60 120 180 240 300 360 420 480 540 600
DSTS 0.17 0.2 0.32 0.37 0.47 0.53 0.65 0.85 0.84 1.12
Greedy 0.23 0.16 0.24 0.26 0.29 0.35 0.43 0.52 0.58 0.72

Table 4: Run-time of realistic problems (milliseconds)
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cability reasons, as privacy preservation comes with a price tag of considerably
higher overheads.

An interesting feature of the problem at hand is that users do not know in
advance with whom they are constrained, which is considered trivial informa-
tion in other problem domains (e.g., meeting scheduling [28]). This problem can
be handled in a privacy-preserving manner by employing standard multi-party
computation methods. Basically, each pair of users has to construct a Boolean
or arithmetic circuit that represents the time intervals of the observation oppor-
tunities. That circuit can be evaluated using techniques of cryptography (e.g.,
garbled circuits [47]) to obtain mutual information of the overlaps without learn-
ing anything else. Despite the cryptographic workload, such a preprocessing stage
is performed only once by each pair of users (O(n2)) and, therefore, does not
heavily influence the overall performance. Another solution for the preprocessing
stage is to delegate these computations to a set of external mediators. Recent
studies in the DCOP field showed that such mediators may perform the compu-
tations in an oblivious manner, without gaining access neither to the problem
inputs nor to its outputs [37,21] (this is in contrast to the centralized approach
in which the central authority is exposed to the inputs and outputs). An inter-
esting direction for future work is to devise a mediation-based solution in which
the mediators can perform both the preprocessing stage and the DCOP-solving
stage.

In this work we do not assume that the satellites have limited capacity; how-
ever, some real-world satellites do have such limitation. Applying this limitation
to our model is not trivial since it requires adding global constraints, which are
known to impair the performance. Nonetheless, a solution to a similar problem
has been successfully applied recently, including the development of new vari-
ation of DSA that focuses on problems with limited capacity [19]. Therefore,
employing a similar solution in DSTS is another prospect for future work. Yet
another issue is that of dynamic changes; satellites are often affected by environ-
mental changes (e.g., clouds) or may receive emergency requests. We, therefore,
plan to follow recent advances on dynamic DCOPs [16] to enable dynamic mod-
ifications of the timetables.
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