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Abstract We present a domain-specific modeling language for a class of uni-
versity timetabling problems (UTP) that involve course scheduling, resource
allocation and student sectioning. The UTP language combines a formal do-
main model and a rules formalism to state constraints. The model is based
on a multi-scale schedule horizon (i.e., weeks, weekdays and daily slots), a hi-
erarchical course structure (i.e., course parts, part classes and class sessions),
and an extended set of resources (i.e., rooms, lecturers, students and student
groups). Student groups must be formed to populate classes and class sessions
are to be scheduled individually and allocated single or multiple rooms and
lecturers. The model encodes sectioning constraints on classes, core schedul-
ing constraints on sessions as well as compatibility, capacity and cardinality
constraints on resource allocation. Rules allow to state conjunctions of con-
straints on selected sets of entities and sessions using a catalog of timetabling
predicates and a syntax to group, filter and bind entities and sessions. As for
implementation, the UTP language is based on XML and comes with a tool chain
that flattens rules into constraints and converts instances to solver-compatible
formats. We present here the abstract syntax of the UTP language and alterna-
tive constraint programming models developed in MiniZinc and CHR together
with preliminary experiments on a real case study.
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2 V. Barichard et al.

1 Introduction

Course and exam organization in universities involves strategic, tactical and
operational decisions relating to curriculum design, student sectioning, course
staffing, room planning, class scheduling and resource allocation [28]. These
computational tasks and their overall coordination vary between countries and
educational institutions as does the level of process automation and decision
tool support [35]. In French universities for instance (see Figure 1), curricula
are conventionally revisited every 5 years and students enroll in courses prior
to each teaching period in the course of the academic year. Demand is matched
by sectioning courses into classes, partitioning students into fixed groups, and
populating classes with groups. Eligible groups, lecturers, rooms and equip-
ment are then identified for each course before class sessions get scheduled
and allocated the necessary resources. Each stage involves different stakehold-
ers with their own requirements (faculty departments, administrative units,
course owners, lecturers, tutors, etc.) and the workflow naturally allows for
deviations and contingencies (marginal amendments to curricula on a yearly
basis, late student registrations, staff absences, etc.).

Fig. 1 Conventional workflow for course organization in French universities.

Various problem formulations together with data formats and algorithms
have been proposed in the literature to tackle specific aspects of university
timetabling including curriculum balancing [15,17,33], student sectioning [31,
34], examination timetabling [13,8,29], curriculum-based or post-enrolment-
based course timetabling [29,10,27,12,22,16], tutor allocation [14], and mini-
mal timetabling perturbation [28,26]. Modeling languages have also been de-
veloped, notably the XML language used in the 2019 international timetabling
competition [30,24] (which we refer to as the ITC-2019 language) which pro-
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A Constraint Language For University Timetabling 3

vides a catalog of constraints and supports model variability. We adopt a
similar approach in this paper and introduce a class of university timetabling
problems called UTP that involve course scheduling, resource allocation and
student sectioning. We present a domain-specific language to model UTP in-
stances (UTP language) which is designed around a formal domain model and a
rules language to state constraints. Each instance is decomposed into a model
of entities, a rule set and a solution component. Rules express collections of
timetabling constraints on model entities and the solution component lists as-
signment decisions. The latter may be void, partial or inconsistent to accom-
modate different contexts (e.g., a solution for student sectioning to turn into
a complete timetable, an outdated solution that must be revised or repaired).

Similarly to the ITC-2019 language, the UTP language adopts a multi-
scale schedule horizon (i.e., weeks, weekdays and daily slots), a mixed set of
resources (i.e., students, student groups, rooms and lecturers), and a hierar-
chical course structure (i.e., course parts, part classes and class sessions). In
our approach however, class sessions (a.k.a., class meetings) are considered
as first-class objects that must be scheduled individually alongside resources.
The model supports single-resource sessions (e.g., single lecturer) as well as
multi-resource sessions (e.g., hybrid teaching), and encodes core constraints
relating to student sectioning, session scheduling and resource allocation. All
resources are assumed cumulative (i.e., rooms, lecturers and students may host,
teach and attend overlapping sessions) but this policy may be overridden with
disjunctive scheduling rules. The rules language effectively allows to enforce
additional constraints on selected sets of sessions and entities (i.e., resources
and course elements). Rules are expressed using a catalog of timetabling pred-
icates and a comprehension syntax to group, filter and bind sessions and en-
tities. Specifically, each rule denotes a conjunction of UTP constraints sharing
the same predicate (e.g., periodicity of all lecture classes of a course) and
constraints are technically generated through a rule flattening process.

Note that all constraints are handled as hard constraints and each UTP in-
stance is reduced to a hard constraint satisfaction problem (CSP). The ability
to model preferences and multi-criteria objectives by the means of soft con-
straints is paramount in course timetabling and will be the subject of future
extensions. Likewise, the catalog of UTP predicates still lacks important con-
straints (e.g., gap, distribution and pattern constraints - see e.g. [6,16]) which
will be gradually added in future versions.

As for implementation, the UTP language is based on XML and embedded
in two constraint modeling languages, namely, MiniZinc [32,3] and CHR [18].
We developed a tool chain consisting of a XML parser, a rule processor to
flatten rules into constraints, and an encoder to convert the resulting in-
stances to solver-compatible formats (see Figure 2). Beyond MiniZinc and
CHR, constraint-based UTP instances may be used as inputs to any solver im-
plementing the model and predicates of the UTP language. We do not discuss
here the XML syntax of the language (the reader is referred to [1] which pro-
vides access to the detailed specification, the MiniZinc and CHR models, the
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4 V. Barichard et al.

Fig. 2 The UTP toolchain.

tool suite, and a benchmark of instances). Rather, we present the abstract
syntax of the UTP language and provide semantics for the key components.

The remainder of the paper is organized as follows. Section 2 introduces the
UTP language and draws a comparison with the ITC-2019 schema. Section 3
presents a generic constraint-based UTP model. Section 4 discusses its imple-
mentation using MiniZinc and CHR and the cross-validation of the models on
a real instance. Section 5 concludes and discusses extensions of this work.

2 University Timetabling Problem

A UTP instance is defined by an entity model and a rules set. A solution to a UTP
instance is a list of choices made for all the decisions at stake that satisfies the
core constraints of the entity model and the constraints expressed by the rules.
We provide in this section an informal description and set-theoretic semantics
for the UTP language components, namely the entity model (Section 2.1), con-
straints (Section 2.2), rules (Section 2.3) and solution (Section 2.4). Section 2.5
draws a comparison between the UTP language and the ITC-2019 schema.

2.1 Entity model

The entity model of a UTP instance defines its schedule horizon, course struc-
ture and resources, as well as properties of entities and relational maps (see
Figure 3 for a sketch of the meta-model and Figure 4 for a toy example). First,
the entity model uses a time grid that decomposes into weeks, weekdays and
daily slots. Weeks share the same weekdays and weekdays the same daily slots.
The latter make up 24 hours and have the same duration. Note that neither
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A Constraint Language For University Timetabling 5

successive weeks nor successive weekdays are assumed to be consecutive. The
schedule horizon is implicitly defined by the series of time slots mapping to
week, weekday and daily slot combinations. Slots hence serve as time points
to represent start and end times of course sessions and to measure session
duration, travel time and any gap between sessions.

Courses have a tree-structure wherein each course (e.g., Algorithms) de-
composes into parts (e.g., Lecture and Lab), parts into classes (e.g., lecture
classes A and B), and classes into sessions (e.g., sessions 1 to 10 for each lec-
ture class). Class sessions are the elementary tasks to schedule when solving
a UTP instance and the model fixes their number, duration and sequencing.
First, the classes of a course part are decomposed into an identical number of
sessions of equal duration, both constants being part-specific. Although this
approach forbids classes using different session durations in a course part, it is
paramount to capture requirements that rely on clear-cut sessions (e.g., start-
ing lab classes after 2 lecture sessions, synchronizing the 5th sessions of the
lab classes for a joint examination). Second, the sessions of a class are ranked
in the model and must be sequenced accordingly in any solution (session 1
before session 2 . . . ). Note that sessions are considered uninterruptible and, in
particular, may not overlap two days.

Fig. 3 Entity meta-model.

UTP resources fall into 4 types, namely, rooms, lecturers, students and (stu-
dent) groups. All the resources of an instance, except groups (see Section 2.4),
are declared and typed in the entity model. In practice, upstream processes
and decisions determine the suitable rooms, eligible lecturers, candidate stu-
dents and allowed times for the different courses (e.g., faculties prescribing
degree-specific time grids, departments implementing room pooling policies
and naming lecturers for courses, students registering to courses). These com-
patibility constraints are modeled by associating sets of possible start times,
rooms and lecturers to each course part and a set of registered students to
each course. Each session then inherits the sets of allowed resources from the
course part and the course it belongs to.
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6 V. Barichard et al.

The entity model also encodes flow constraints that govern the distribution
of resources over courses based on student registrations and capacity planning
decisions (e.g., workload distribution between lecturers). First, each lecturer is
allocated a fixed number of sessions in each course part he is eligible for, leaving
lecturer-to-session assignment decisions to solvers. Second, each room allowed
in a course part may be freely allocated to any session of the part (possibly
none) but the model provides the flexibility to mark a room as mandatory in
which case it will host or co-host all the sessions. As for students, the sectioning
policy is implicit and complies with the course structure, i.e., each student
must be assigned to a single class in each part of a course he has registered to
and attend all sessions of these classes. In addition, the model supports group
nesting constraints between classes to implement course-specific policies (e.g.,
aggregating student groups bottom-up from labs to lectures) or cross-course
sectioning (e.g., imposing the same groups between classes of different courses
of a curriculum).

Resource utilization is naturally subject to demand and capacity con-
straints. Since modalities differ from one environment to the next, the lan-
guage supports disjunctive and cumulative resources. The default policy is to
consider all students, groups, lecturers and rooms as cumulative resources, i.e.,
they can attend, teach or host simultaneous sessions. Note though that rules
may be stated to make some resources fully disjunctive or to prevent specific
sessions from overlapping. Support for cumulative resources is paramount to
address flexible attendance requirements (e.g., students assigned optional tu-
toring sessions that may overlap with compulsory courses) or to handle multi-
class events (e.g., rooms hosting several classes for an exam or a conference).
The model imposes no limits on the number of parallel sessions lecturers and
students may attend. Rooms however may only host class sessions whose cu-
mulated headcount is within their capacity. Upper bounds on room capacity
and class size are encoded for all rooms and classes and the model also allows
uncapacitated rooms to cater for the case of virtual rooms.

The language also supports sessions using multiple resources of the same
type. The need for multiple rooms or lecturers arises in practical situations
(e.g., multi-room sessions for hybrid teaching, joint supervision of practical
work sessions, exams requiring several monitors). To this end, the model as-
sociates to each course part the number of lecturers required per session and
indicates whether the sessions are single- or multi-rooms. Note that sessions
without lecturers or rooms are allowed (e.g., unsupervised student project ses-
sions). The model enforces specific constraints to handle multi-room sessions
which override the default room allocation policy. Specifically, students attend-
ing the session may be freely dispatched in rooms irrespectively of the group
structure, the cumulated capacity of the allocated rooms is taken into account
for hosting, uncapacitated rooms cannot be allocated, and the allocated rooms
are considered disjunctive for the time of the session.

Note finally that the language provides users with the ability to label re-
sources and course elements to define their own classes of entities (e.g., teams
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of lecturers, blocks of rooms). Labels together with built-in entity types and
identifiers are used to filter entities and to scope rules appropriately.

We formalize below the entity model and introduce notations that will be
used thereafter. Let E denote the set of entities and S the set of sessions. E is
partitioned into a set of courses C, a set of course parts P , a set of classes K, a
set of students U , a set of lecturers L, a set of rooms R, and the singleton do-
main of courses C∗ (C∗ = {C}). Let E = {C∗, C, P,K,U, L,R} denote the set
of entity types (E = ∪X∈EX) and ≺ = {(C∗, C), (C,P ), (P,K), (K,S), (U,C),
(L,P ), (R,P )} denote the relation over E ∪ {S} that models the course hier-
archy and the distribution of resource types over course components.

≺∗ denotes the transitive closure of ≺ over E ∪ {S} and dX,Y : X → 2Y

denotes the function mapping each element of X to its set of compatible ele-
ments in Y for each pair X≺∗Y . For instance, dR,P represents the distribution
of rooms over course parts, dP,K the decomposition of course parts into classes,
dK,S the decomposition of classes into sessions, and dR,S the inferred distribu-
tion of rooms over sessions. The functions corresponding to the pairs of ≺ are
directly encoded in the entity model and the remaining functions are defined
inductively using recursive aggregation.

We shall denote by dX,Y
i the image of entity i of typeX over 2Y and by dY,X

the inverse of dX,Y . Equation (1) below models the hierarchical decomposition
of course elements1, Equation (2) is the closure rule over ≺∗, and Equation
(3) models inverse maps.

∀(X,Y ) ∈ {(C∗, C), (C,P ), (P,K), (K,S)} : Y = ⊔i∈XdX,Y
i (1)

∀X,Y, Z ∈ E ∪ {S} : X ⪯∗ Y ⪯∗ Z ⇒ (∀i ∈ X : dX,Z
i = ⊔j∈dX,Y

i
dY,Zj ) (2)

∀X,Y ∈ E : X ⪯∗ Y ⇒ (∀i ∈ X, j ∈ Y : j ∈ dX,Y
i ⇔ i ∈ dY,Xj ) (3)

Table 1 provides the full list of constants, sets, properties and relational
maps encoded in the entity model.2

2.2 Predicates and constraints

UTP constraints apply to pairs, called e-maps, which associate an entity with a
non-empty subset of its compatible sessions. Constraints are built with predi-
cates whose signature includes e-map variables, the number of which is referred
to as the arity of the predicate. Note that some predicates may also accept
parameters. Let F = ∪X∈E{(e, S′) | e ∈ X,S′ ⊆ dX,S

e ∧S′ ̸= ∅} denote the set

1 ⊔ denotes the disjoint union operation, i.e. set union over pairwise disjoint sets.
2 The following rules apply. H = {i.d.m + j.m + k | 0 ≤ i < w, 0 ≤ j < d, 1 ≤ k ≤ m}.

For each class k in part p, {rankSs | s ∈ dK,S
k } = {1, . . . , |dK,S

k |}, and parentsK,K
k ̸⊂ dP,K

p .

For each pair of sessions s, s′, (s, s′) ∈ O iff dS,Ks = dS,K
s′ and rankS

s′ = rankSs +1. For each

course part p, teamP
p .|dP,S

p | =
∑

l∈d
P,L
p

serviceL×P
l,p .
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8 V. Barichard et al.

(w, d,m) the number of weeks w, weekdays d and daily slots m
H the time slots
E the entities

C∗ ⊆ E the course domain
C ⊆ E the courses
P ⊆ E the course parts
K ⊆ E the classes
R ⊆ E the rooms
L ⊆ E the lecturers
U ⊆ E the students

dX,Y
i ⊆ Y the entities of type Y associated with entity i of type X

L ⊆ 2E the labels

G ⊆ 2U the groups of students
S the sessions

dX,S
i ⊆ S the sessions compatible with entity i of type X

dS,Xs ⊆ X the entities of type X compatible with session s

dS,Hs ⊆ H the start times allowed for session s
lengthS

s ∈ H the duration of session s
rankSs ∈ N∗ the rank of session s in its class
O ⊆ S × S the pairs of sessions with consecutive ranks in a class

parentsK,K
k ⊆ K the parent classes of class k if any

maxsizeKk ∈ N the maximum size of class k

capacityRr ∈ N the capacity of room r
virtualRr ∈ B whether room r is virtual or not

V ⊆ R the virtual rooms

multiPp ∈ B whether course part p is multi-room or not
M ⊆ P the multi-room parts

mandatoryPp ⊆ R the mandatory rooms of part p

teamP
p ∈ N the number of lecturers required by every session of part p

serviceL×P
l,p ∈ N the number of sessions required by lecturer l in part p

Table 1 Entity model: constants, sets, maps and relations.

of e-maps, a UTP constraint has the form

c((e1, S1), . . . , (em, Sm), p1, . . . , pn) (4)

where c is a predicate symbol of arity m, (e1, S1), . . . , (em, Sm) are e-maps
((ei, Si) ∈ F , i = 1 . . .m) and p1, . . . , pn are values for the parameters of c
(n ≥ 0). Three constraints (C1, C2, C3) are illustrated in Figure 4.

Every predicate may be used indistinctly with e-maps defined on course
elements or on resources. E-maps defined on resources are interpreted as con-
ditional session-to-resource assignments when checking constraints whereas
e-maps defined on course elements are unconditional assignments since they
model constitutive sessions. In other words, a constraint is only evaluated on
the sessions for which its e-map arguments and the considered solution propose
the same entity assignment.3

3 Formally, let xE,S
e be the variable denoting the set of sessions assigned to entity e

and S′
1, . . . , S

′
m be sets of sessions, the conditionality of a constraint c is stated as follows:

(xE,S
e1 = S′

1 ∧ . . . ∧ xE,S
em = S′

m) ⇒ (c((e1, S1), . . . , (em, Sm), p1, . . . , pn) ⇔ c((e1, S1 ∩
S′
1), . . . , (em, Sm ∩ S′

m), p1, . . . , pn)).
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A Constraint Language For University Timetabling 9

It follows that a constraint is evaluated on every session that is mapped
to a course element by one of its e-map arguments. Constraints that apply
exclusively to course elements are therefore unconditional. Note also that the
use of e-maps that model the whole set of sessions compatible with an entity
will necessarily constrain any session that may be assigned to this entity.

Name Arity Parametric Semantics
same daily slot 1 no Sessions start on the same daily slot
same weekday 1 no Sessions start on the same weekday
same weekly slot 1 no Sessions start on the same weekly slot
same week 1 no Sessions start the same week
same day 1 no Sessions start the same day
same slot 1 no Sessions start at the same time
forbidden period 1 yes Sessions cannot start in the given time period
at most daily 1 yes The number of sessions scheduled in the daily period is upper-bounded
at most weekly 1 yes The number of sessions scheduled in the weekly period is upper-bounded
sequenced ≥ 2 no Sessions are sequenced
weekly 1 no Sessions are weekly
no overlap 1 no Sessions cannot overlap
travel 1 yes Travel time is factored in if sessions hosted in the given rooms
same rooms 1 no Sessions are hosted in the same room(s)
same students 1 no Sessions are attended by the same student(s)
same lecturers 1 no Sessions are taught by the same lecturer(s)
adjacent rooms 1 yes Sessions are hosted in the given adjacent rooms
lecturer distribution ≥ 2 yes Distributes lecturer workload over classes

Table 2 Catalog of UTP predicates.

Table 2 lists the predicates of the language and indicates which are vari-
adic or parametric. The first predicates same daily slot, . . . , same slot en-
force common restrictions on the start times of the targeted sessions (e.g.,
sessions starting the same day). Additionally, any start time interval may
be forbidden by passing its start and end points as parameters to predicate
forbidden period. Predicates at most daily and at most weekly upper-
bound the number of sessions scheduled daily or weekly within the given
time interval. sequenced is a n-ary predicate (n ≥ 2) which constrains the
latest session of the i-th e-map to end before the earliest session of i + 1-
th e-map (i = 1..n − 1). Predicate weekly ensures sessions are scheduled
weekly without presuming any particular sequencing. Predicate no overlap

ensures sessions do not overlap in time and is typically used to model disjunc-
tive resources. Predicate travel factors in any travel time incurred between
consecutive sessions hosted in distant rooms. The travel time matrix is a pa-
rameter of the predicate. same rooms, same students and same lecturers

require that sessions be assigned to the same set of rooms, students or lec-
turers. Predicate adjacent rooms require that sessions be hosted in adjacent
rooms based on an adjacency graph passed as a parameter. Lastly, predicate
lecturer distribution distributes the volumes of sessions represented by
the different e-map arguments among different lecturers. Lecturers and ses-
sion volumes are parameters of the predicate.
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2.3 Rules

Rules are used to state conjunctions of constraints and in particular single
constraints. Each rule is defined by a universally quantified formula which
bounds the domains of the e-map variables of a given predicate. The collection
of constraints hence represented is derived by instantiating the predicate with
each tuple of e-maps belonging to the cross-product of the prescribed domains.
E-map domains are not given in extension but represented using a language
of selectors allowing to generate and filter e-maps. Let F denote the language
of e-map domain selectors, a UTP rule has the form

c(F1, . . . , Fm, p1, . . . , pn) (5)

and is interpreted by the formula

∀(e1, S1) ∈ JF1K, . . . , (em, Sm) ∈ JFmK : c((e1, S1), . . . , (em, Sm), p1, . . . , pn)
(6)

where c is a predicate symbol of arity m, F1, . . . , Fm are selectors (Fi ∈ F ,
i = 1 . . .m), JFiK denotes the domain of e-maps represented by selector Fi ∈ F ,
and p1, . . . pn are values for the parameters of c (n ≥ 0), .

The language of selectors allows to target entities based on type, label or
identifier and to filter their sets of sessions based on session rank and mutual
compatibility with other entities. It is complete in the sense that it allows
to construct any domain of e-maps whose entities share the same type. For
instance, one may construct the e-maps which associate any of the rooms la-
beled Building-A with the compatible sessions of rank 2 or 4 that are also
constitutive of course course-1 or class class-3. A selector combines a gener-
ator and an optional list of filters. Generators and filters are triples (Ti, Li, Oi)
consisting of an entity type Ti, an entity label or identifier Li and a subset of
session ranks Oi (a.k.a., session mask), the latter two elements being optional.
A selector matches any e-map whose entity satisfies the type, label and iden-
tifier constraints of the generator and whose image includes any compatible
session satisfying the mask of the generator and one of the filters. Note that
rules featuring null selectors are discarded during the flattening stage.

Let O denote the range of session ranks, dO,S : O → 2S the rank-based par-
titioning of sessions (s ∈ dO,S

o iff rankSs = o), and L∗ = L∪{E}∪{{e} | e ∈ E}
the set of labels completed with the whole set of entities to mock label op-
tionality and singleton entities to support identity-based selection, the lan-
guage of selectors is the set F = ∪n≥1(E × L∗ × 2O)n. Each selector d =
((T1, L1, O1), . . . , (Tk, Lk, Ok)) decomposes into a generator (T1, L1, O1) and
a possibly empty list of filters ((T2, L2, O2), . . . , (Tk, Lk, Ok)). d matches any
e-map whose entity has type T1 and label L1 and whose image includes any
compatible session satisfying mask O1 and any of the filters. The set of e-maps
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JdK matched by d is defined by

JdK =
⋃

e∈T1∩L1

{
(e, S′) | S′ = dT1,S

e

⋂ ⋃
i=2...k

(
dTi,S [Li]

⋂
dO,S [O1 ∩Oi]

)
∧ S′ ̸= ∅

}
where dX,Y [X ′] =

⋃
i∈X′

dX,Y
i with X ′ ⊆ X .

forbidden period((<(L,lecturer2, )>,9120,9240) (R1)

sequenced(<(K, ,{3}),(P,algoLec, )>, <(K, ,{1}),(P,algoLab, )>) (R2)

forbidden period((lecturer2,{algoLab1:1,algoLab1:2,algoLab2:1,algoLab2:2}),
9120,9240) (C1)

sequenced((algoLec1,{algoLec1:3}), (algoLab1,{algoLab1:1})) (C2)

sequenced((algoLec1,{algoLec1:3}), (algoLab2,{algoLab2:1}) (C3)

Fig. 4 Rules flattening and corresponding constraints on a toy example.

Figure 4 illustrates the rules flattening process on a toy example. Course
algorithms is split into a lecture part algoLec and a lab part algoLab. The
lecture part has a single class of 4 sessions taught by lecturer1 and the
lab part has 2 classes of 2 sessions each taught by lecturer1 or lecturer2.
Rule R1 requires that lecturer2 has no session between slots 9120 and 9240,
corresponding for instance to 8am and 10am on Tuesday of week 2. The selec-
tor includes no mask and no filter hence matches with all possible sessions of
lecturer2 as indicated with diamonds on Figure 4. The resulting domain of
e-maps is the singleton {(lecturer2, dL,S

lecturer2)} and the rule is flattened into a
single forbidden period constraint (C1). Rule R2 requires that the first ses-
sions of the labs start after the third lecture. The two selectors include a filter.
The first selector matches with all class sessions of rank 3 in part algoLec,
and the second matches with all class sessions of rank 1 in part algoLab as
indicated with stars on the figure. The rule is flattened into 2 sequenced con-
straints (C2 and C3) corresponding to the cross product of the e-map domains
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12 V. Barichard et al.

{(algoLec1, {s ∈ S | rankSs = 3}∩dP,S
algoLec)} and {(algoLab1, {s ∈ S | rankSs =

1} ∩ dP,S
algoLab), (algoLab2, {s ∈ S | rankSs = 1} ∩ dP,S

algoLab)}.

2.4 Solution

The solution component includes assignment decisions relating to the choice
of slots and resources for sessions, the placement of students in groups and
the assignment of groups to classes. The solution hence represented may be
partial, even empty, and does not have to be consistent with the constraints
built in the entity model or entailed by the rules. The support for partial
solutions allows to tackle subproblems using separate UTP instances and solu-
tion seeds. For instance, a scheduling instance may be defined on the basis of
partial and consistent solutions pre-generated for the student sectioning and
resource allocation subproblems. Likewise, the support for inconsistent solu-
tions is paramount to repair solutions that have become inconsistent due to
unforeseen changes.

Student groups are considered a by-product of student sectioning. For this
reason, groups may only be listed in the solution component, not in the entity
model, and defined both by the students they include and the classes they are
assigned to. This sectioning process is subject to different constraints. First,
students are partitionned into groups and students are inextricably bound to
their group. Second, a group may only include students with identical course
registrations. Third, group-to-class assignments must comply with any sub-
group inclusion constraint stated in the entity model.

2.5 Related work

We highlight here the main differences between the UTP language and the
ITC-2019 language (ITC-2019 for short).

A first difference between the two frameworks lies in the representation
of the possible times a class can meet. In UTP, a class is defined by a single
sequence of sessions of equal duration and the problem is to schedule each
session. In ITC-2019, a class is given alternative fixed session schedules (times
elements in the XML schema) and the problem is to choose one of the schedules
for the class. A schedule is the repetition over a set of weeks of one or more
sessions that have the same duration and start on specific days of the week
at the same predefined time (daily slot). The two representations are not
reducible to one another. For instance, alternative schedules using different
session durations cannot be modeled in UTP. Conversely, class schedules where
sessions do not necessarily start on the same daily slot cannot be modeled
in ITC-2019. Nevertheless, basic class schedules may be represented in either
approach by stating ITC-2019 constraints or UTP rules on classes. For instance,
a class meeting every week on the same day and the same daily slot, both
being subject to time restrictions, may be modeled using same daily slot,
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weekly and forbidden period constraints. The implementation of a more
comprehensive reduction method will be the subject of future work.

Second, ITC-2019 represents alternative course configurations by introduc-
ing an intermediate layer in the course hierarchy that sits between courses
and parts. The configurations of a course typically differ in their number
of (sub)parts and are mutually exclusive from a student sectioning stand-
point, that is, a registered student must be assigned a single configuration
and attend all of its parts. This feature is not currently supported in UTP. As
for resources, UTP explicitly represents lecturers on par with rooms whereas
ITC-2019 only models rooms. UTP also provides the flexibility to allocate dif-
ferent resources within a class (and specify lecturer workload in particular)
whereas the same room must be allocated in ITC-2019. Additionally, UTP sup-
ports multi-resource sessions whereas ITC-2019 is restricted to single-room
sessions.

Lastly, the two constraint languages present important differences. While
ITC-2019 constraint predicates apply to classes, UTP predicates apply to any
set(s) of sessions and may be used in particular on individual sessions, hence
granting finer-grained control. Besides, UTP rules and the selector language
allows to constrain any class of resources or course elements in a concise way.

Lastly, the ITC-2019 schema addresses the timetabling problem as a com-
binatorial optimization problem. It includes a cost function weighting 4 criteria
which respectively penalize the choice of sessions and rooms for the classes,
the violations of constraints and the overlapping of sessions per student. In its
current version, the UTP language addresses the problem as a hard constraint
satisfaction problem. The integration of soft constraints and the possibility
of aggregating penalties or preferences, either in solution generation or repair
contexts, is under investigation.

3 A Constraint-Based Model for UTP

We introduce in this section a constraint-based model for UTP instances. The
model of an instance combines the constraints associated to the entity model
and the constraints resulting from the flattening of the rules, if any. The for-
mer are decomposed into 4 fragments relating to student sectioning, resource
distribution, session scheduling and resource allocation. We present each frag-
ment in turn by reusing notations of Table 1, illustrate the modeling of some
predicates before discussing opportunities for model reformulations on a per-
instance basis. Note that some constraints are given a naive formulation to
clarify semantics and more efficient implementations using MiniZinc and CHR

will be discussed in Section 4.

Table 3 lists the decision variables of the model. All, except time slot
variables, are set variables.
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xG,U
g ⊆ U the set of students assigned to group g

xK,G
k ⊆ G the set of groups assigned to class k

xS,R
s ⊆ R the set of rooms assigned to session s

xS,L
s ⊆ L the set of lecturers assigned to session s

xR,S
r ⊆ S the set of sessions assigned to room r

xS,H
s ∈ H the start slot assigned to session s

Table 3 The decision variables.

3.1 Student Sectioning

The sectioning constraints partition students into groups and assign groups
to classes while satisfying sectioning rules and class size upper-bounds. Con-
straint (1) ensures the groups partition the set of students. Constraint (2) pre-
vents the clustering of students who register to different courses. Constraint (3)
ensures that classes of a course part have no shared groups and Constraint (4)
that the group of a student attends each part of a course he is registered
to. Constraint (5) implements the parent relationships between classes. Con-
straint (6) ensures maximum class size is never exceeded by the number of

students in its groups. Note that expressions (g ∈ xK,G
k ) in this contraint de-

note pseudo-boolean variables. The same notation is used for convenience in
other constraints.

U =
⊔
g∈G

xG,U
g (1)

∀u, u′ ∈ U, dU,C
u ̸= dU,C

u′ , g ∈ G : {u, u′} ⊈ xG,U
g (2)

∀p ∈ P, k, k′ ∈ dP,K
p , k ̸= k′ : xK,G

k

⋂
xK,G
k′ = ∅ (3)

∀u ∈ U, g ∈ G : (u ∈ xG,U
g ) →

∧
p∈dU,P

u

∨
k∈dP,K

p

(g ∈ xK,G
k ) (4)

∀k ∈ K, k′ ∈ parentsK,K
k : xK,G

k ⊆ xK,G
k′ (5)

∀k ∈ K : maxsizeKk ≥
∑
g∈G

|xG,U
g |.(g ∈ xK,G

k ) (6)

3.2 Resource Distribution

Resource distribution involves domain, cardinality and basic summation con-
straints. Constraint (7) defines the allowed rooms and allowed lecturers per
session. Constraint (8) models single-room sessions and Constraint (9) models
mandatory rooms of course parts. Constraint (10) ensures sessions get assigned
the right number of lecturers (possibly none) as defined in each course part
and Constraint (11) ensures each lecturer is assigned the expected number of
sessions.
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∀W ∈ {R,L}, s ∈ S : xS,W
s ⊆ dS,Ws (7)

∀p ∈ P \M, s ∈ dP,S
p : |xS,R

s | = 1 (8)

∀p ∈ P, s ∈ dP,S
p : mandatoryPp ⊆ xS,R

s (9)

∀p ∈ P, s ∈ dP,S
p : teamP

p = |xS,L
s | (10)

∀l ∈ L, p ∈ P : serviceL×P
l,p =

∑
s∈dP,S

p

(l ∈ xS,L
s ) (11)

3.3 Session Scheduling and Resource Allocation

Session scheduling and resource allocation involve positioning, sequencing,
non-overlapping and capacity constraints. Constraint (12) defines the allowed
slots per session and Constraint (13) ensures sessions do not span over two
days. Constraint (14) sequences sessions if they are ranked consecutively in a
class. Constraint (15) models multi-room class sessions and enforces exclusive
access to their rooms. This constraint is formulated using auxiliary predicate
split(w, S1, S2) (18) which ensures no session of S1 overlaps with a session of
S2 if both are assigned to resource w. We provide a naive decomposition of
this predicate using Predicate (19). Constraints (16) and (17) model room uti-
lization and capacity limits and use auxiliary variables yr,k,s,h. yr,k,s,h models
the number of students attending session s of class k in room r at time h
and is defined using auxiliary constraint (20). Constraint (16) is the default
cumulative constraint which applies to non-virtual rooms when allocated to
single-room sessions. Constraint (17) handles the specific case of multi-room
sessions and ensures the cumulated capacity of the rooms used by a multi-
room session exceeds the number of students attending the session. Note that
the constraint is purely quantitative and allows each individual group to be
distributed over different rooms.

∀s ∈ S : xS,H
s ∈ dS,Hs (12)

∀s ∈ S : xS,H
s /m = (xS,H

s + lengthS
s )/m (13)

∀(s, s′) ∈ O : xS,H
s + lengthS

s ≤ xS,H
s′ (14)

∀k ∈ dP,K [M ] :
∧

r∈dK,R
k

split(r, dK,S
k , dR,S

r \ dK,S
k ) (15)

∀r ∈ R \ V :
∧
h∈H

capacityRr ≥
∑

p∈dR,P
r \M

k∈dP,K
p

s∈dK,S
k

yr,k,s,h (16)

∀p ∈ M :
∧
h∈H

k∈dP,K
p

s∈dK,S
k

∑
r∈dP,R

p

(r ∈ xS,R
s ).capacityRr ≥ max

r∈dP,R
p

yr,k,s,h (17)
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Let W ∈ {R,L,U}, w ∈ W,S1, S2 ⊆ S :

split(w, S1, S2) ↔
∧

s1∈S1,s2∈S2
s1 ̸=s2

(w ∈ xS,W
s1 ∩ xS,W

s2 → split(s1, s2)) (18)

Let s, s′ ∈ S :

split(s, s′) ↔ (xS,H
s + lengthS

s ≤ xS,H
s′ ∨ xS,H

s′ + lengthS
s′ ≤ xS,H

s ) (19)

Let r ∈ R, k ∈ K, s ∈ S, h ∈ H :

yr,k,s,h = (r ∈ xS,R
s ).(xS,H

s ≤ h ∧ h ≤ xS,H
s + lengthS

s )

.
∑
g∈G

|xG,U
g |.(g ∈ xK,G

k ) (20)

3.4 UTP Predicates

We present a subset of UTP constraint predicates, namely, forbidden period (21),
same weekday (22), same rooms (23), no overlap (24) and sequenced (25).
Note that forbidden period accepts start and end point parameters. Predi-
cate no overlap uses auxiliary predicate split for resources (18) and a variant
for course elements (26).
Let X ∈ E , e ∈ X,S′ ⊆ dX,S

e , h, h′ ∈ H (h < h′).

forbidden period((e, S′), h, h′)

↔
∧
s∈S′

(xS,H
s + lengthS

s ≤ h ∨ h′ < xS,H
s ) (21)

same weekday((e, S′)) ↔
∧
s∈S′

xS,H
s /d = (xS,H

s + lengthS
s )/d (22)

same rooms((e, S′)) ↔
∧

s,s′∈S′

(xS,R
s = xS,R

s′ ) (23)

no overlap((e, S′)) ↔ split(e, S′, S′) (24)

Let i ∈ {1, . . . , n}, Xi ∈ E , ei ∈ Xi, Si ⊆ dXi,S
ei :

sequenced((e1, S1), . . ., (en, Sn))

↔
∧

j=1...n−1

max
s∈Sj

(xS,H
s + lengthS

s ) ≤ min
s∈Sj+1

xS,H
s

(25)

Let X ∈ {C∗, C, P,K}, e ∈ X,S1, S2 ⊆ S :

split(e, S1, S2) ↔
∧

s1∈S1,s2∈S2
s1 ̸=s2

(e ∈ dS,Xs1 ∩ dS,Xs2 → split(s1, s2)) (26)
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3.5 Reformulation

The model presented above is generic and may be adapted on a per instance
basis depending on the features and rules at stake. We discuss here a few vari-
ants of the UTP problem which provide opportunities for model reformulation.

When instances only involve single-room sessions (M = ∅), one may adopt
integer or enumerated room allocation variables instead of set variables xS,R

s

and rewrite constraints accordingly. In the same way, lecturer assignment vari-
ables and constraints may be adapted when a single lecturer is required per
session. Note that hybrid models mixing single or multi-resource session vari-
ables may be considered too. The temporal model may also be simplified when
the time grid is coarse-grain and guarantees no session can span over consec-
utive start times (∀s ∈ S, lengthS

s ≤ min({h′ − h | h, h′ ∈ dP,H [P ] ∧ h < h′}).
This situation occurs in institutions that impose a common time grid to
ensure sessions (with any travel time incurred) necessarily fit in each time
slot. If so, sessions may be handled as time points rather than time inter-
vals and temporal predicates and constraints may be adapted. Capacity con-
straints may also be simplified for disjunctive rooms. A room is disjunctive if
a no overlap constraint is stated on the whole set of its compatible sessions
(r ∈ D ↔ no overlap(r, dR,S

r ) where D ⊆ R denotes the set of disjunctive
rooms). If so, the default cumulative constraint (16) may be overridden by
Constraint (27).

∀r ∈ D :
∧
h∈H

k∈dR,K
r

capacityRr ≥ max
s∈dK,S

k

yr,k,s,h (27)

4 Constraint Programming Implementation

In this section, we present two constraint-based models for UTP instances devel-
oped in MiniZinc and CHR. The two models use the same arrays, functions and
constants for representing input data. We do not list them here but they are
easily understandable such as part sessions which gives the set of sessions
constitutive of a part, session rooms which gives the set of allowed rooms for
a session, week which gives the week of a slot, and nr weekly slots which is
the number of slots in a week.

4.1 MiniZinc model

MiniZinc is a high-level language to model constrained optimization prob-
lems [32,3]. MiniZinc models are translated into Flatzinc [4] which allows
to interface different types of solvers including solvers on finite domain CSPs
such as Gecode [2]. The MiniZinc model for UTP is presented in Table 5 and
based on the decisions variables listed in Table 4. The model uses some of the
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global constraints supported in MiniZinc which are dedicated to scheduling
problems.

array[U] of var G: x group group assigned to a student
array[K] of var set of G: x groups set of groups assigned to a class
array[S] of var set of R: x rooms set of rooms allocated to a session
array[S] of var set of L: x lecturers set of lecturers allocated to a session
array[S] of var H: x slot starting slot of a session

Table 4 Decision variables (MiniZinc).

Sectioning constraints partition students into groups and assign each group
to a class according to sectioning rules and class size thresholds. Constraint (1)
allows students to be part of the same group only if they are registered to the
same courses. (2) imposes that every student attends all the part of the courses
to which he is registered. (3) ensures that classes from the same part do not
have any common group. (4) implements the parent-child relation between
classes. Lastly, (5) checks that the groups fit in the class they have been as-
signed to.

Resource distribution relies on domain, cardinality and sum constraints.
Constraints (6) and (7) define available rooms and lecturers for each session.
(8) forces the number of rooms allocated to a session according to the specific
requirements of the course part (i.e., no room, single-room or multi-room). (9)
allocates the required number of lecturers to a session and (10) checks that
every lecturer has the right number of sessions in a part.

Session scheduling and resource allocation involves positioning, sequenc-
ing, non-overlaping and capacity constraints. Constraint (11) defines the al-
lowed slots for each session. (12) forbids a session to be on two days. (13)
sequences the sessions of a class according to their rank. Constraints (14) and
(15) model multi-room sessions and the exclusive access to their rooms. (14)
makes disjunctive any resource that is allocated to a multi-room session while
it is hosting the session. (15) ensures that the number of students attending
a multi-room session do not exceed the cumulated capacity of the allocated
rooms. (16) models the mandatory rooms to be allocated. (17) models the de-
fault cumulative capacity constraint controlling the allocation of non-virtual
rooms to single-room sessions. This constraint uses the cumulative global con-
straint of MiniZinc (see [9] for the Gecode implementation) which MiniZinc

also reuses to rewrite the global disjunctive constraint.

Table 5 also presents some UTP predicates when the targeted resources are
rooms. (18) implements the forbidden period predicate that takes the start
and end time slots of the period as parameters. (19), (20) and (21) model
same weekday, same rooms and sequenced predicates, respectively. (22) im-
plements the no overlap predicate that relies on the disjunctive global con-
straint.
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forall(u, v in U where u<v)
(student courses[u]!=student courses[v] -> x group[u]!=x group[v]) (1)

forall(u in U, p in student parts[u])
(exists(k in part classes[p])(x group[u] in x groups[k])) (2)

forall(p in P, k1, k2 in part classes[p] where k1<k2)
(x groups[k1] intersect x groups[k2] = {}) (3)

forall(k1 in K, k2 in class parents(k1))(x groups[k1] subset x groups[k2]) (4)
forall(k in K)(maxsize[k]<=sum(g in G)

(bool2int(g in x groups[k]) ∗ sum(u in U)(bool2int(x group[u] = g))) (5)
forall(s in S)(x rooms[s] subset part rooms[session part[s]]) (6)
forall(s in S)(x lecturers[s] subset part lecturers[session part[s]]) (7)
forall(s in S, p in P where p = session part[s])(

(part room use[p] = none -> x rooms[s] = {})
/\ (part room use[p] = single -> card(x rooms[s]) = 1)
/\ (part room use[p] = multiple -> card(x rooms[s])>=1)) (8)

forall(s in S)(card(x lecturers[s]) = team[session part[s]]) (9)
forall(p in P, l in part lecturers[p])

(sum(s in part sessions(p))(bool2int(l in x lecturers[s]) = service[l, p])) (10)
forall(p in P, s in part sessions(p))

(week(x slot[s]) in weeks[p]
/\ weekday(x slot[s]) in weekdays[p]
/\ dailyslot(x slot[s]) in dailyslots[p]) (11)

forall(s in S)
((x slot[s]− 1) div nr slots per day =
(x slot[s] + length[s]− 1) div nr slots per day) (12)

forall(k in K, s1, s2 in class sessions[k] where rank(s1)<rank(s2))
(x slot[s1] + length[s]>=x slot[s2]) (13)

forall(p in P, s1 in part sessions[p], r in part rooms[p], s2 in room sessions[r]
where is multi rooms[p] /\ s1!=s2)
(disjunctive([x slot[s1], x slot[s2]],
[bool2int(r in x rooms[s1]) ∗ length[s1], bool2int(r in x rooms[s2]) ∗

length[s2]]))
(14)

forall(p in P, s in part sessions[p] where is multi rooms[p])
(sum(r in part rooms[p])(bool2int(r in x rooms[s]) ∗ capacity[r])
<=sum(g in class groups[session class[s]])(card(group students[g]))) (15)

forall(p in P, s in part sessions[p])(mandatory rooms[p] subset x rooms[s]) (16)
forall(r in R where not(virtual[r]))(

let {set of S: RS= room sessions[r] intersect single room sessions;} in
(cumulative([x slot[s]|s in RS],
[bool2int(r in x rooms[s]) ∗ length[s]|s in RS],
[sum(g in G)(bool2int(g in x groups[session class[s]])) ∗ sum(u in U)(

bool2int(g = x group[u]))|s in RS], capacity[r])) (17)
forbidden period((r, S′), h1, h2) = forall(i in S′)(

r in x rooms[i] -> (x slot[i] + length[i]<=h1 \/x slot[i]>h2)) (18)
same weekday((r, S′)) = forall(i, j in S′ where i<j)(

(r in x rooms[i] intersect x rooms[j]) ->

(x slot[i] div nr weekly slots = x slot[j] div nr weekly slots)) (19)
same rooms((r, S′)) = forall(i, j in S′ where i<j)((

r in x rooms[i] intersect x rooms[j]) -> x rooms[i] = x rooms[j]) (20)
sequenced((r1, S1), (r2, S2)) = forall(i in S1, j in S2)(

(r1 in x rooms[i] /\ r2 in x rooms[j]) -> x slot[i]+length[i]<=x slot[j]) (21)
no overlap((r, S′)) =

disjunctive([x slot[i]|i in S′], [length[i]∗bool2int(r in x rooms[i])|i in S′]) (22)

Table 5 Constraints and predicates of the MiniZinc model.
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4.2 CHR model

CHR (for Constraint Handling Rules) [18,21,19,20] are a committed-choice lan-
guage consisting of multiple-heads guarded rules that replace constraints by
more simple constraints until they are solved. CHR are a special-purpose lan-
guage concerned with defining declarative constraints in the sense of Con-
straint logic programming [23,25]. CHR are a language extension that allows to
introduce user-defined constraints, i.e. first-order predicates, into a given host
language as Prolog, Lisp, Java, or C/C++. CHR have been extended to CHR∨

[5] that introduces the don’t know nondeterminism in CHR [11]. This nonde-
terminism is freely offered when the host language is Prolog and allows to
specify easily problems from the NP complexity class.

To model and solve UTP instances with the CHR language, we use the CHR++
solver [7] (for Constraint Handling Rules in C++), which is an efficient integra-
tion of CHR in the programming language C++.

The full model for CHR++ is too long to be detailed here4. We give in Ta-
ble 7 the list of constraints taken into account by the solver. The decision
variables to be instantiated are given in Table 6. They are similar to those of
the MiniZinc model, only the end-of-session variables are added.

∀s ∈ S : x rooms[s] ⊆ R set of rooms allocated to a session
∀s ∈ S : x lecturers[s] ⊆ L set of lecturers allocated to a session
∀s ∈ S : x slot start[s] ∈ H starting slot allocated to a session
∀s ∈ S : x slot end[s] ∈ H ending slot allocated to a session

Table 6 Decision variables (CHR).

To simplify its implementation, the model is partly non-cumulative and
some resources such as lecturers cannot be shared. It also considers that the
sectioning and allocation of students to groups is done beforehand. Thus, com-
puting a solution amounts to finding a consistent resource allocation while
placing the schedules for all sessions.

Several constraints can be set at the instance analysis stage. This is the
case for constraints (1) to (9) of Table 7. Constraints (2), (3) and (4) filter the
domains by removing the rooms, lecturers or time slots which are impossible
by construction of the instance. Constraint (5) ensures that a session starts
and ends on the same day by removing from the domain values that contradict
it.

Other constraints are set and managed by rules which monitor modifica-
tions to the domains of variables. This is the case for Constraint (1) which
ensures the integrity of the start and end of session variables. The same is
true for (6) which ensures that the number of lecturers teaching a session is

4 The interested reader can download the sources of the model [1].
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Integrity constraint :
∀s ∈ S : x slot end[s] = x slot start[s] + length(s) (1)

Static constraints (instance input filtering)) :
∀s ∈ S : x rooms[s] ⊆ part rooms[session part(s)] (2)
∀s ∈ S : x lecturers[s] ⊆ part lecturers[session part(s)] (3)
∀p ∈ P,∀s ∈ part sessions(p) :(

week(x slot start[s]) ∈ weeks[p]
)

∧
(
weekday(x slot start[s]) ∈ days[p]

)
∧
(
dailyslot(x slot start[s]) ∈ dailyslots[p]

)
(4)

∀s ∈ S : x slot start[s]/nr slots per day = x slot end[s]/nr slots per day (5)
∀s ∈ S : card(x lecturers[s]) = team[session part[s]] (6)
∀k ∈ K,∀s ∈ class sessions[k] :

If
(
part room use[class part(k)] = none

)
then card(x rooms[s]) = 0

If
(
part room use[class part(k)] = single

)
then card(x rooms[s]) = 1

If
(
part room use[class part(k)] = multiple

)
then card(x rooms[s]) ≥ 1 (7)

∀k ∈ K,∀s, s′ ∈ class sessions[k], s.t. rank(s) < rank(s′) : before(s, s′) (8)
∀k1, k2 ∈ K, s.t. ∃g1 ∈ class groups[k1], ∃g2 ∈ class groups[k2], avec g1 = g2 :

∀s1 ∈ class sessions(k1), s2 ∈ class sessions(k2) : disjunct(s1, s2) (9)
Static predicates :

forbidden period((e, S′), h, h′) = ∀i ∈ S′ : (x slot start[i] + length(i) ≤ h) ∨
(x slot start[i] > h′)

(10)

sequenced((e1, S1), (e2, S2)) = ∀i1 ∈ S1, ∀i2 ∈ S2 : before(i1, i2) (11)
same rooms((e, S′)) = ∀s1, s2 ∈ S′, s.t. s1 < s2 : x rooms[s1] ∼ x rooms[s2] (12)

Dynamic constraints :
∀p ∈ P, ∀l ∈ part lecturers[p] :

∣∣∣∣{x | x ∈ part sessions(p), l ∈
x lecturers[x]}

∣∣∣∣ = service[l, p]

(13)

∀s ∈ S,∀r ∈ session rooms(s) :∑
{group students[g] | g ∈ session room group(s, r), r ∈ x rooms[s]} ≤

capacity[r]
(14)

∀s ∈ S, s.t. has mandatory room(s) : session mandatory[s] ⊆ x rooms[s] (15)
Dynamic predicate :

same weekday((e, S′)) =
∀s1, s2 ∈ S′, s.t. s1 < s2 : x slot start[s1]/nr weekly slots =

x slot start[s2]/nr weekly slots
(16)

Introspective constraints :
∀k1, k2 ∈ K,∀s1 ∈ class sessions[k1], ∀s2 ∈ class sessions[k2], s.t. s1 ̸= s2 :

x lecturers[s1] ∩ x lecturers[s2] ̸= ∅ ⇒ disjunct(s1, s2) (17)
∀k1, k2 ∈ K,∀s1 ∈ class sessions[k1], ∀s2 ∈ class sessions[k2] s.t. s1 ̸= s2 :

x rooms[s1] ∩ x rooms[s2] ̸= ∅ ⇒ disjunct(s1, s2) (18)

Table 7 Constraints and predicates of the CHR model.

valid and (7) which checks that the number of rooms allocated to a session
corresponds to what is required in the instance.

We give as an example the CHR++ rule which checks the integrity of the
variables of beginning and end of session. The rule uses a plus propagator to
ensure consistency of the constraint. This is triggered as soon as a domain of
a variable is updated:

session_slot(_, S_Start, S_End, S_Length)
=>> CP::Int::plus(S_Start, (*S_Length)-1, S_End);;

We use CHR++ which allows us to manipulate values associated with logical
variables and to wake up the corresponding rules as soon as a modification
of the value occurs. This mechanism combined with the forward chaining of
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CHR allows us to implement an efficient rule wake-up and domain propagation
mechanism in the manner of a CSP solver.

Constraints (8) and (9) add new CHR constraints to the model. Indeed,
constraints before and disjunct are constraints ensuring the precedence and
non-overlapping of two sessions. They are accompanied by rules verifying the
coherence of the disjunctive graph created implicitly by the addition of all
these constraints. The static predicates correspond to those read from the
instance. They are processed and some new constraints (filtering constraints,
CHR constraints or unification of variables) are added.

Dynamic constraints ranging from (13) to (18) are only triggered under
certain conditions. CHR guarded rules are used for this purpose. (13) checks that
a lecturer teaches the expected number of sessions in each course part. (14)
ensures that the capacity of the rooms is respected and (15) verifies that the
rooms marked as mandatory are indeed found in the solution. Predicate (16)
ensures that sessions subject to the same constraint same weekday are set on
the same day of the week.

Constraints (17) and (18) add constraints when certain conditions are veri-
fied. Thus, (17) adds a disjunct between two sessions when the same lecturer
participates. (18) adds a constraint between two sessions if they take place in
the same room. These constraints enrich the disjunctive graph representing
the sequencing of all the sessions.

It should be noted that the CHR model performs domain filtering but also
analyses the disjunctive graph in order to eliminate non-solutions. The edges of
the disjunctive graph are oriented as the resolution progresses and the decision
variables are instantiated.

4.3 Experimentations

We carried out preliminary experiments on a real-life instance modeling the
second semester of the last year of Bachelor in Computer Sciences at Université
d’Angers (available at [1]). The main objective was to validate the solvers and
assess their ability to generate solutions in a reasonable time.

The instance contains 5 mandatory courses and 2 courses to choose among
4 additional courses. The instance thus consists of 9 courses decomposed into
24 parts, 45 classes and 241 sessions. Courses are taught during 12 weeks, 5
days a week (Monday to Friday), where each day is divided into 1440 slots.
At the Faculty of Sciences of Université d’Angers, course sessions last 1h and
20 minutes or 2 hours and start at regular intervals every 90 minutes starting
at 8h00 and finishing at 19h50. The 90 minutes interval includes a 10 minutes
break allowing students and lecturers to change rooms.

The instance contains 8 rooms, 12 lecturers and 67 students. In our case,
student sectioning was performed in advance and prepartitioned the students
into 4 groups. Lecturers are either course owners involved in all the parts of a
course (lecture, tutorial and lab) or tutors that are involved in labs of different
courses. There are 47 rules defined in the instance: 13 weekly, 17 sequenced,
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2 same slot, 5 same week, 5 same rooms and 5 same lecturers. The 47 rules
were flattened into 216 constraints and the order of 1000 decision variables.

The MiniZinc and CHR solvers presented in Section 3 were used to solve
the instance with an Intel Core i7-10875H 2.30GHz. Both solvers generate
a valid solution in less than 5 seconds. The solutions are different due to
the two resolution strategies but compliant with each solver which shows the
convergence of both models and solvers.

5 Conclusion and Perspectives

We introduced in this paper a domain-specific language for university course
timetabling. The language allows to model a wide variety of course timetabling
problems such as those encountered in French universities. It provides support
for typical timetabling entities (students, sessions, lecturers, rooms, groups)
and features (student sectioning, resource distribution, session scheduling, re-
source allocation) and includes a rules language to easily express constraints
(sequencing, periodicity, etc.). Rules allow to target any subset of domain en-
tities and sessions and enforce timetabling-specific predicates.

We used the language to encode a real instance (Bachelor courses of a
French university) and implemented a tool chain to convert the XML instance
files into solver-compatible formats. In order to validate our approach, we
implemented a CSP model in MiniZinc and CHR and produced solutions for
the considered instance.

We are currently working on different extensions of the language and the
back-end solvers. First, we intend to represent preferences and priorities in
order to support timetable optimization and repair tasks. Second, the current
CP models may be improved using dedicated scheduling constraints, search
strategies and heuristics and take advantage of model simplication and refor-
mulation techniques. Another objective is to improve scalability by testing our
solvers on large-scale instances aggregating different curriculae or converted
from academic benchmarks. Lastly, we intend to investigate the revision of
timetables to manage unexpected events (e.g. unavailability of a lecturer, late
registration of students) or to support incremental solution construction.
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20. Frühwirth, T., Raiser, F. (eds.): Constraint Handling Rules: Compilation, Execution,

and Analysis. Cambridge University Press (2011)
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