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Abstract. We consider a complex university timetabling problem aris-
ing in a four-year study program of teacher education where every stu-
dent has to choose two subjects. Since any combination of two subjects is
feasible, the goal of designing a collision-free timetable for every student
seems to be unreachable. However, the task becomes more tractable be-
cause for most courses several parallel groups are offered, i.e. sectioning of
students is possible. Further difficulties arise from the highly individual
progress of students who often follow neither the prescribed term of each
course nor the prescribed ordering of courses. Under these and other con-
ditions an optimized timetable should be determined and adjusted to the
estimated student numbers and their past achievements. After moving
main lectures into a regular time grid with minimal changes concerning
the previously existing plan, the task of finding a timetable for all lectures
with parallel groups is modeled as an integer linear program (ILP). Later,
students with their actual demands are allocated a non-overlapping set
of courses that is relevant and feasible for their individual study situa-
tion. This part can be handled by an assignment-type model followed by
a round-robin allocation of remaining capacities.
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1 Introduction

A timetabling problem generally consists of assigning a set of activities to re-
sources such that a set of complex constraints is fulfilled, which varies depending
on the given problem. Whereas these constraints are usually considered to be
hard, desirable characteristics of the timetable are introduced as soft constraints
into the objective function. The goal is to find a feasible assignment while min-
imizing the weighted sum of the penalties representing these violations.
There is a wide range of real-world applications, including university timetabling,
where different categories of specific problems are distinguished: Examination
timetabling (ETT), post-enrollment course timetabling (PE-CTT) and curriculum-
based course timetabling (CB-CTT). Both of the latter two deal with the assign-
ment of courses to time periods and usually rooms, however, there are certain
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differences. In PE-CTT the timetable is established after the enrolment of stu-
dents, thus taking into account that students are enrolled in various combina-
tions of events and somehow incorporating these selections. CB-CTT determines
a timetable based on a curriculum of study programs, that is, a list of courses to
be taken by a group of students. A recent survey on all the available formulations
of educational timetabling is provided by Ceschia et al. [4].
These timetabling problems form only one side of the issues that operations re-
search has to address in education, see Johnes [8] for an overview. Real-world
educational planning scenarios often simultaneously comprise components of var-
ious problems, depending on the stage of planning and area of application (such
as elementary or tertiary education). Therefore the correct choice of methods de-
pends on the planning characteristics (such as information availability or choice
of planning entities) and combined approaches seem appropriate.
One of the additional issues is the group of student sectioning problems (see
e.g. [12]), where students are assigned to particular sections of a course satisfy-
ing constraints such as room or section capacity and avoiding conflicts in stu-
dents’ timetables due to overlaps. Quite often this is considered a sub-problem
of course timetabling. That is, after deriving an adequate timetable, one seeks
an optimal assignment of students to classes avoiding conflicts and taking into
account students’ needs/requests and other soft constraints such as preferences
or daily workload.
The timetabling problem we are dealing with is a complex scenario involving
several non-standard properties. Its main decision problem can be categorized
as a variant of a sectioning problem.

After giving a general description of the problem in Section 2 we point to some
related literature in Section 3. The mathematical models introduced for solving
our timetabling problem will be presented in Section 4. Our approach consists
of three phases: Phase 1 shifts important “main lectures” from their historical
starting times into the regular time grid which serves as a basis of all our plans.
In Phase 2 a complex ILP model is set up which determines in one optimization
step the time periods of all courses (many of them consisting of several parallel
groups) and also assigns individual sets of relevant courses in collision-free time
periods to groups of students with identical properties. Since this step has to
be carried out many months before the start of an academic year, these groups
of students are only estimations of future student demand. The final course
assignment of students is done at a later time in Phase 3 by matching actual
students to estimated groups. Both Phases 1 and 3 employ generalizations of the
linear assignment problem with additional conflict constraints. Computational
experiments in Section 5 illustrate the potential and limitations of the large ILP
model.

2 Problem description

We were asked by the central administration of the University of Graz, Aus-
tria, to develop an automated solution approach for a complex timetabling task
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arising in the teacher education study program which involves roughly 4,200 stu-
dents. From an educational planning perspective, it can be considered a multi-
phase scheduling problem. More precisely it consists primarily of a timetabling
step producing as output the day of the week and starting time of every course
(which stays constant over the whole term). This step consists of two phases:
In Phase 1, starting times of courses with a larger audience (and no parallel
groups) are moved from their historical starting times into the regular time
grid prescribed by the university. Since these moves cause major disturbances
and negative side effects, their total time deviation will be minimized under
non-collision constraints. In the second phase the starting times for all courses
with parallel groups are computed from scratch (also obeying the regular time
grid). To assure feasible timetables for individual students this phase is coupled
with the sectioning of projected students. Later, in the third phase, the planning
problem asks for an assignment of pre-registered actual students which assigns
to each student a set of courses that are feasible, relevant, and non-overlapping
for the respective student.
The reason for the coupling of methods as well as separation into distinct phases
is the structure of the given planning process at our university. This procedure
essentially covers the capacity planning of the number of sections and the es-
tablishment of yearly timetables for the teacher education study program. The
study program of teacher education requires the choice of two subjects (such as
English and chemistry), thus the planning entails the coordination of all involved
departments and those of their provided courses, which are part of the program’s
curriculum.
While the definition of the number of sections is based on enrollment predictions
and the establishment of the timetable (first and second phase) needs to be
carried out in March for the two terms of the academic year to come (starting in
October), the actual enrollments (required for the third phase) only come to be
known in September (for the winter term) resp. February (for the summer term),
when an adaption and especially a re-scheduling of courses is not permitted
anymore. So there is a crucial temporal delay between planning and information
receipt. Moreover, since departments currently schedule courses autonomously
and only distinctive overlapping time conflicts (e.g. of prominent courses) are
resolved bilaterally, the majority of students of any combination of subjects will
face time conflicts in their weekly timetable. Nevertheless, the final schedule has
been ascertained to be of major influence in regards to the study conditions and
therefore students’ performance in completing their studies.
To improve the situation of studying, we seek to support both planning processes
by deriving models to optimize the weekly timetable using the respective infor-
mation given during phases, resulting - opposed to conventional approaches - in a
combination of sectioning and timetabling. While the true target is being free of
conflicts, we also seek a compact timetable for the individual student and didac-
tic practicability. The target groups for facilitation are especially those students
who exhibit non-standard study progresses, such that courses are not completed
in the term that is recommended in the curriculum. For that reason and as
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opposed to many curriculum-based models the method needs to comprise the
capability to avoid time conflicts between courses that are not nominally taken in
the same year. The resulting term-overlapping constraints are determined from
given historical data that describes to which extent courses are completed earlier
or (more likely) later than recommended. Courses that are prone to be taken
later than in the prescribed term will be called displaced courses.
The input structure of the problem primarily consists of a set of courses. These
consist on one hand of so-called main courses (lectures) Cm, which usually
cater to a larger audience and do not have parallel groups. However, many of
them have a historically established starting time, possibly outside the regular
time grid. Then there are standard courses (exercise classes, seminars, etc.) C,
where each course c ∈ C has a limited capacity cap(c) and therefore a certain
number of sections (parallel groups) are offered. As stated the number of these
groups is determined by a separate planning process (involving also financial
considerations) and is provided as an input to the timetabling task. For each
course resp. parallel-group a lecturer is given. Equivalently, for each lecturer
l ∈ L, its set of courses C(l) is known. Following the most common teaching
mode, we assume that each course or group is given by exactly one lecturer,
although team teaching or shared courses may well occur in practice. However,
our model could be easily extended to accommodate more than one lecturer per
course.
Each course is part of the curriculum of exactly one subject and is prescribed for
exactly one term. Besides that, there are also some general main courses which
are part of every curriculum (any combination of subjects) and have to be taken
by all students.
Note that – different from many existing timetabling applications – rooms are
not considered in our planning task. This is because rooms are shared with
the programs of the other ca. 30,000 students of the university. Therefore, an
automated allocation of rooms would have far-reaching consequences for the
decentral planning process of the whole university. However, rooms currently
do not pose a major problem to the planers because the majority of courses
have either very specific requirements with regards to rooms (such as chemistry
labs) or none at all. While the former use a room that is tightly coupled to
the department and usually shared in a limited and well-practiced manner, the
former can use any room on the campus.

3 Related work

In the literature, there exist several strategies of section management, depend-
ing on the concrete problem where they are applied. The problem has been
tackled either as a separate problem or integrated into the timetabling proce-
dure. Aubin and Ferland [1] for example iteratively adjusted both timetable and
section assignment given an initial timetable. Banks et al. [3] propose a rather
simultaneous approach, where they assign sections of courses to time periods
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and iteratively add constraints, each representing a student course selection, to
satisfy as many choices as possible.
A very comprehensive approach is the one by Müller and Murray [12], who
propose a multi-phase sectioning strategy, considering various information stages
in educational planning and using different (heuristic) algorithms for each phase.
In detail, they identify three different approaches to sectioning that they call
Initial sectioning, Batch sectioning, and Online sectioning, which differ based on
the time when it takes place and the information available at that time. The
same approach has been further extended and specifically applied to a Faculty
of Education by Müller and Rudová [13].
An integrated timetabling and sectioning problem has been recently proposed
for the fourth International Timetabling Competition (ITC-2019) [14]. The ITC-
2019 problem consists of sectioning students into classes based on course enroll-
ments and then assigning classes to available periods and rooms. Courses may
have a complex structure of classes, with one or more configurations, further di-
vided into subparts and the parent-child relationship between classes. The other
remarkable feature is that the timetable may differ from week to week, instead
of replicating the same weekly timetable for the whole semester.
It is worth mentioning that for such a complex timetabling/sectioning problem
as the ITC-2019 one, the solution techniques based on MIP solvers turned out
to be very competitive. Indeed, the MIP formulation by Holm et al. [7] won the
competition and produced the best solution for the majority of the instances.
Most of the remaining best solutions have been obtained by a local search ap-
proach, which did not enter the competition as it was proposed by one of the
organizers (i.e., Müller [11]).
Other successful applications of MIP models to timetabling problems are the
works by Lach and Lübbecke [10] and by Bagger et al. [2], that worked on the CB-
CTT problem obtaining both good solutions and tight lower bounds. Another
complex, real-world sectioning problem has been proposed by Esmaeilbeigi et
al. [6] for a military school. In their problem, a lesson has a multiphase structure,
such that each phase may require different resources and is taken by different
students.
Finally, complexity analysis of the student sectioning problem has been carried
out by Dostert et al. [5] and Schindt [15], identifying the cases in which the
problem is polynomial and those in which the problem is NP-hard.

4 The Mathematical Models

As pointed out in Section 2 our planning problem consists of three separate
phases. In the following, we describe our solution approach for each of them.
The aim of Phases 1 and 2 is a complete timetable for all courses.
Each course a ∈ Cm ∪ C belongs to exactly one subject f(a) and is prescribed
for a certain term n(a) with n(a) ∈ {1, 2, . . . , 8}, corresponding to winter and
summer semesters of a four year program. As an exception, there is a small subset
of main courses which is prescribed for all subjects (educational theory, etc.).
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Furthermore, each regular course a ∈ C comprises g(a) ≥ 1 sections (parallel
groups). Thus, the timetable consists of a starting time for each main course
a ∈ Cm and for each section of every course a ∈ C.

4.1 Phase 1: Alignment of main lectures

The feasible time periods of the timetable consist of a day of the week and a
starting time. The latter is set by university rules to a fixed time grid starting at
8:15 and continuing with a sequence of 90 minutes of lecture time and 15 minutes
breaks. This allows for seven time slots per day, i.e. a set P consisting of 35 time
periods per week as shown below. We only assign lectures of 90 minutes and
exclude from consideration the small number of lectures with deviating duration.

start Mon Tue Wed Thu Fri
08:15
10:00
11:45
13:30
15:15
17:00
18:45

In Phase 1 the main lectures Cm (which do not have parallel sections) will be
aligned to the given time grid. A majority of main lectures already follow this
prescribed time frame, but a non-negligible minority deviates from the time grid.
Since the main lectures in general hardly change their time and room over the
years and some of them are also part of other curricula outside our planning task,
it makes sense to change their starting times as little as possible. Therefore, we
set their starting times by solving a version of the linear assignment problem with
additional conflict constraints. Thereby we match main lectures to time periods
p ∈ P of the given time grid with the additional restrictions that main courses
belonging to the same term t ∈ T must not overlap. This non-collision condition
is imposed independently from the subject since it should be possible to study
any combination of subjects without overlaps in the main courses as there exists
no alternative for them. The special main courses which are prescribed for all
subjects cannot overlap with any other main course of the same term. Function
Cm(t) returns the set of courses that belong to term t ∈ T . Additionally, lecturers
l ∈ L cannot be assigned to more than one course at the same time, both in the
winter and the summer semester. Function Cm(l) then returns the set of courses
that are given by lecturer l. The single binary decision variable ycp = 1 if main
course c is assigned to time period p, and 0 otherwise.
As a linear objective function, we consider the distance ∆(c, p) between the
current time slot of course c (i.e. as in the previous year) and the new time period
p ∈ P . If both times are on the same day,∆(c, p) describes the absolute difference
in minutes between the current starting time and the beginning of period p.
Otherwise, i.e. if the course is moved to a different day, we assume a penalty
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value ρ equal to three times the maximum intra-day distance (independently
from the new day). The resulting assignment-type integer linear program is as
follows:

min
y

∑
c∈Cm

∑
p∈P

ycp ·∆(c, p) (1a)

s.t.
∑
p∈P

ycp = 1, ∀c ∈ Cm, (1b)

∑
c∈Cm(t)

ycp ≤ 1, ∀p ∈ P, t ∈ T, (1c)

∑
c∈Cm(l)

ycp ≤ 1, ∀p ∈ P, l ∈ L, (1d)

ycp ∈ {0, 1} (1e)

The results are listed in Table 1, together with the computation time. It turned
out that in the winter and summer semester 69% and 47.4%, respectively, of all
main lectures had to be adjusted. The assignment of the remaining courses in
Cm already followed the time grid and was not changed. Notably, the solutions
do not comprise any alignment to another working day. Furthermore, the amount
of rescheduled lectures varies substantially for different terms, such that earlier
terms show more displacements.

Table 1: Results of main lecture adjustments.

semester |Cm| adjusted courses av. adj. max. adj.
winter 71 49 1h48m 7h
summer 38 18 2h51m 7h

It should be noted that Phase 1 is relevant mostly for the introductory year
of the new planning tool, or when additional subjects are integrated into the
planning process. Once all main courses are aligned with the time grid, Phase 1
will be used only for assigning new main courses and for handling exceptions
such as enforced changes.

4.2 Phase 2: Timetabling-Sectioning

Phase 2 is the most complex part. It considers the computation of starting times
for all freely assignable courses, many of them being offered with parallel groups,
which necessitates the sectioning of the estimated student cohorts.
The demand structure of the planning task is captured by sets of students each
of them enrolled in two subjects {f1, f2} (of equal importance), where each fi is
chosen arbitrarily from a set F of 28 offered subjects. In our Central European
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setting the progress of a student does not follow a strict yearly pattern, e.g. a
student cannot be immediately identified as a third-year student, which is quite
different from many international university systems. To place a student s in a
certain term, we count the sum ECTSs of ECTS credits reached and assign the
student to term ts = dECTSs

30 e, since 30 ECTS are the usual workload assigned
for one term. Our experience tells us that most students proceed equally fast in
their two subjects. Thus, we do not distinguish the progress in the two subjects.
To scale the optimization problem of Phase 2 to a more tractable size, we combine
sets of ∆ (e.g. ∆ = 5) identical students, i.e. students with the same pair of
subjects and in the same assumed term, to a so-called student quantum. The set
of all quanta is denoted by I. Each quantum i ∈ I is placed in the same term ti
as the corresponding students. Although the ∆ students represented by a single
quantum may well differ in the precise set of courses they have passed already,
this simplification should be acceptable because the students will have another
one or two terms to increase their credits before the next assignment phase.
Thus, even students with a currently identical track record may well differ in
their state at the beginning of the next term. For this reason, it is also pointless
to include a full precedence check in the selection of courses for a quantum.

In the following, we describe the generation of the courses Ci assigned to each
quantum i ∈ I. All courses prescribed for term t will be denoted as regu-
lar courses Cr(t). As stated, some of these regular courses shall be assigned
to conflict-free time slots with courses of previous terms - so-called displaced
courses. As described further below we will rate courses as displaced according
to historical exam data. Depending on the proportion of students taking such
a course cr ∈ Cr(t) late, the sections of cr will be split in two parts: One part
remains in cr to be done in term t. The remaining sections comprise a newly
generated displaced course cd ∈ Cd(t + 2) to be assigned with delay for term
t+ 2. The quantum capacity of a regular or displaced course c denoted by qc is
given by the number of sections times the capacity of a section (parallel-group)
cap(c) scaled by the quantum size ∆.
To connect the course supply with demand, every quantum i ∈ I with term ti is
assigned a set of courses Ci taken from the relevant courses C̄i ⊂ (Cr(ti)∪Cd(ti))
that are required to be completed in the upcoming term. This set C̄i consists
of all courses, which - given quantum i assumed term ti and combination of
subjects - need to be completed according to the curriculum.
The generation of the quanta’s course sets is described in Algorithm 1. Starting
with the highest term t (i.e. t = 8) for each student quantum i at first and
as long as the quantum capacity of the course is not met, all displaced courses
cd ∈ Cd(t) are assigned to Ci. Secondly, regular courses cr ∈ Cr(t) of term t are
assigned, however only if Ci does not contain any displaced predecessor course of
cr. In both cases, the algorithm stops as soon as at least 20 ECTS are reached.
Note that the prescribed workload for a student in a term amounts to 30 ECTS.
The chosen discrepancy serves as slack for the matching of real enrolled students
in the second phase when a difference between quanta’s course lists and the ac-
tual requirements of real students seems inevitable. This also helps to reach
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Algorithm 1 Generation of courses Ci for quantum i ∈ I
1: n terms
2: displaced courses Cd(t), regular courses Cr(t), relevant courses C̄i, Ci = {} ∀i ∈ I,
3: course capacities qc, quantum size ∆
4: term t = n
5: while t ≥ 1 do
6: for i ∈ I do
7: for cd ∈ Cd(t) ∩ C̄i do
8: if qc ≥ ∆ then
9: Ci ← Ci ∪ {cd}
10: qc ← qc −∆
11: if ECTS(Ci) ≥ 20 then
12: break
13: end if
14: end if
15: end for
16: for cr ∈ Cr(t) ∩ C̄i do
17: if ECTS(Ci) ≥ 20 then
18: break
19: end if
20: if Ci does not contain precedence of cr then
21: Ci ← Ci ∪ {cr}
22: end if
23: end for
24: end for
25: t← t− 1
26: end while

feasibility. Moreover, the university administration would like to keep some de-
gree of freedom for the students to select additional courses on their own thus
making it easier to accept a centralized course assignment regime.
From a different angle, this slack also reflects the special situation of main courses
Cm which are not considered in Ci. These main courses are seen as crucial
parts of each subject and therefore should be available for every student without
collisions in the respective term. Thus, we will not consider their ECTS in the
workload of the current term.
As mentioned above, the definition of the number of displaced sections is based
on historical examination data. The examination data provides the set of stu-
dents S(a) that have completed this course and for each s ∈ S(a) we are given
the term p(a, s) in which student s has passed the course a. Note that under the
flexible rules of our university p(a, s) may well differ from the prescribed term
n(a).
Based on this data we compute a lateness value L(a, s) which represents the
delay of student s in passing course a relative to other courses. Therefore, we
count the courses (weighted by their ECTS) prescribed for later terms which
s has taken in the same term or earlier than a, and the course prescribed for
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the same term as a but taken in an earlier term than a. The total number of
these “preponed” courses serves as a lateness value L(a, s) and is compared to a
predefined threshold T to label course a as passed late by student s. Formally,
we have:

L1(a, s) :=
∑
b∈C

ECTS(b) with n(b) > n(a) and p(b, s) ≤ p(a, s)

L2(a, s) :=
∑
b∈C

ECTS(b) with n(b) = n(a) and p(b, s) < p(a, s)

L(a, s) := L1(a, s) + L2(a, s)

Note that this definition also yields meaningful values for “slowly progressing”
students which pass all their courses later than prescribed. If L(a, s) > T then
a is passed late by s. Computing the lateness over all students s ∈ S(a), we
determine the delay factor of course a as

del(a) =
|{s ∈ S(a) | L(a, s) > T}|

|S(a)|
.

To align the timetable with the actual progress of students we split the g(a)
sections of the regular course a as follows. Defining g1(a) := bg(a) · del(a)c, we
introduce a new “auxiliary” course a′ with g1(a) sections and prescribed for the
successive year, i.e. for term n(a′) := n(a) + 2. The original course a remains at
term n(a) but its sections are reduced to g(a) := g(a)− g1(a). In this way, some
course sections are offered in line with the study schedule of slower progressing
students.

The ILP-Model The optimization step in essence seeks to assign sections
g ∈ G(c) of all courses c ∈ C to time periods p ∈ P of a recurring working week.
As is the case for many timetabling problems, the main goal of the planning
task is reaching a feasible solution, while the actual objective function is of sec-
ondary importance. In our planning problem, the university administration did
not specify a particular goal or quality criterion for the timetable. However, our
discussions with student representatives and teachers exhibited clear preferences
not dissimilar from goals observed in classical university timetabling tasks. Our
objective function consists of two parts: The first part aims at avoiding pairs of
lectures with long breaks in between for a student quantum. Considering travel
times and missing facilities for spending free time this represents the desire of
having courses in a single time block. The second part takes into account ped-
agogical as well as group dynamic aspects. It considers each session of a course
and aims at minimizing the number of different secondary subjects followed by
the student quanta of this session. Indeed, it would often be preferred to have a
more homogeneous student body in a lecture, possibly all enrolled in the same
or only two different other subjects (besides the subject of the course).
The main decision variable ycgp = 1 if section g of course c is assigned to p ∈ P ,
and 0 otherwise. Likewise a student quantum i ∈ I is assigned to a section g
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of one of it’s compulsory courses c ∈ Ci if variable xicg = 1, analogously for
c ∈ Cm with G(c) = 1. In addition, we will introduce auxiliary variables vip for
every quantum i ∈ I and time period p ∈ P expressing continuity of assigned
time slots for quantum i, and dcgf to measure the heterogeneity of the quanta
assigned to a section g of course c ∈ C.
The model’s input technically comprises:

– a set of student quanta I and quantum size ∆ (students per quantum),
– overall available time periods P ,
– first and last time periods of a day FP, LP ⊂ P ,
– courses c ∈ C with capacities cap(c) and number of parallel sections G(c),
– main courses Cm and for every cm ∈ Cm the time period p(cm)
– for each quantum i ∈ I the two subjects f1(i), f2(i), and the required courses
Ci ⊆ C and Cm(i) ⊆ Cm 3

– set of lecturers L and the courses C(l) ⊂ C ∪ Cm taught by each lecturer
l ∈ L

– subjects F , subject q(c) ∈ F of course c
– threshold Π limiting the number of sections taking place at the same period

The model is defined as follows:

min
d, v

α ·
∑
p∈P

∑
i∈I

vip + β ·
∑
f∈F

∑
c∈C

G(c)∑
g=1

dcgf (2a)

s.t.

G(c)∑
g=1

xicg = 1, ∀i ∈ I, c ∈ Ci ∪ Cm(i), (2b)

∑
p∈P

ycgp ≤ 1, ∀c ∈ C ∪ Cm, g ∈ {1, . . . , G(c)}, (2c)

ycm1p(cm) = 1, ∀cm ∈ Cm, (2d)∑
c∈C(l)

G(c)∑
g=1

ycgp ≤ 1, ∀l ∈ L, p ∈ P, (2e)

∑
i∈I

xicg ·∆ ≤ cap(c), ∀c ∈ C, g ∈ {1, . . . , G(c)}, (2f)

xic′g1 + xic′′g2 + yc′g1p + yc′′g2p ≤ 3 ∀i ∈ I, c′ 6= c′′ ∈ Ci ∪ Cm(i)

p ∈ P, g1 ∈ {1, . . . , G(c′)}, g2 ∈ {1, . . . , G(c′′)}
,

(2g)
G(c)∑
g=1

∑
c∈Ci∪Cm(i)

(ycgp − ycg(p−1) − ycg(p+1)) ≤ vip ∀i ∈ I
p ∈ P − {FP ∪ LP}

, (2h)

3 More precisely, Cm(i) contains the main lectures that belong to the term that student
quantum i is assumed to be enrolled in according to her/his accomplished ECTS (for
the two subjects chosen by i).
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G(c)∑
g=1

∑
c∈Ci∪Cm(i)

(ycgp − ycg(p+1)) ≤ vip ∀i ∈ I, p ∈ FP, (2i)

G(c)∑
g=1

∑
c∈Ci∪Cm(i)

(ycgp − ycg(p−1)) ≤ vip ∀i ∈ I, p ∈ LP, (2j)

G(c)∑
g=1

ycgp ≤ Π ∀p ∈ P, c ∈ C ∪ Cm, (2k)

∑
{i ∈ I :

f1(i)=f ∨f2(i)=f }

xicg ≤ dcgf
⌈
cap(c)

∆

⌉
∀c ∈ C, g ∈ {1, . . . , G(c)}

f ∈ F \ {q(c)}
, (2l)

xicg, ycgp ∈ {0, 1}, (2m)
vip, dcgf ∈ N (2n)

As described above the objective 2a is twofold: (A) minimizing individual timetable
compactness via minimizing auxiliary variable vip, which counts the number of
free periods in-between assigned lectures for each student quantum. (B) The aux-
iliary variable dcgf represents the overall number of second subjects (curricula)
in a section of a compulsory course c. Minimizing this variable results in a higher
homogeneity of student quanta per section and is hoped to be didactically advan-
tageous, since course contents can be brought into line with the second subject.
The coefficients α and β allow a linear combination of the two parts and should
be chosen in collaboration with the decision-makers. Constraint 2b ensures that
student quantum i is assigned exactly once to a section of a mandatory course.
The set of required courses for a student i, however, comprises some of the main
courses Cm - that were assigned to periods in Phase 1 - and some smaller ones,
such as labs or seminars C - therefore Ci∪Cm(i). Via constraint 2c sections can
take place at most once (if the planning of the number of sections is fairly reli-
ably, 2c can be written with equality). However, some slots are already taken by
the main courses (with one section, g = 1) as assigned in the preceding Phase 1
(2d). Constraint 2e avoids that a section g of course c in the set of all courses
C(l) that a teacher l is giving is assigned to the same period. Given the quantum
size ∆, constraint 2f ensures that the capacities of the regular courses C are not
exceeded. Constraint 2g essentially avoids collisions: Whenever a student quan-
tum i is assigned both to a section 1 and 2, these cannot take place in the same
time period. If they do, the student cannot be assigned to both of them.
Constraint 2h is used to activate the auxiliary variable vip: For all time periods,
except those at the beginning and the end of each working day (sets FP and
LP ), it is verified whether the preceding and following time slot is also taken
by a section that student quantum i has to follow. If not, then there exists an
isolated lecture for student i at time period p and vip is set to one. Constraints 2i
and 2j account for isolated lectures at the end and the beginning of the day. Con-
straint 2k bounds by a threshold Π the number of sections that may take place
at the same time period p. Although the collision avoidance can be expected to
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imply a certain spread of sections over the weekly time grid, it appears necessary
to impose an explicit threshold, since rooms are not explicitly considered in the
model. The more evenly sections are distributed over the week, the easier it will
be to find rooms, whose number of naturally restricted. Constraint 2l finally
adjusts the auxiliary variable dcgf , which is used in the objective function to
reduce the number of different second subjects of quanta in the same section.
For all sections, the enrolled subjects of assigned students are compared to all
curricula (except the one the course belongs to) and counted.

4.3 Phase 3: Student assignment

Phase 3 takes place several months after Phases 1 and 2, shortly before the
beginning of a new term. In this phase actual, enrolled students s ∈ S with
their updated records of courses passed are matched to quanta i (multiples of
students) resulting from Phase 2. Although a student’s s required or relevant
courses Cs depend on her/his study record and curriculum-related prerequisites
- that is, completion of specific courses to enroll in others - the course lists of
quanta Ci are estimated based on ECTS of students one or two terms in the
past. Consequently, discrepancies between the required courses of a student and
the course list of the quantum the student is assigned to will be inevitable.

max
∑
s∈S

∑
i∈I

wsixsi (3a)

s.t.
∑
i∈I

xsi = 1, ∀s ∈ S, (3b)∑
s∈S

xsi ≤ ∆, ∀i ∈ I, (3c)

xsi ≥ 0 (3d)

As formulated above we seek a maximum weight perfect matching on a complete
bipartite graph by solving a variant of the classical linear assignment problem.
Associated to each ’assignment’ is a variable xsi such that xsi = 1 iff student s is
assigned to quantum i, and 0 otherwise. The weight wsi in the objective function
3a represents the degree of fit and is defined as the cardinality of the intersection
of the quanta’s and the actual students’ course set, wsi := |Cs ∩ Ci|. Naturally,
students will be only allocated the courses in Cs∩Ci. Constraint 3b ensures that
each student s is assigned to exactly one quantum i. Via constraint 3c at most
∆ students can be assigned to one quantum. It is well known that the above
mathematical program can be solved as a linear program and the integrality of
xsi is given by default.
For ease of computation, we will apply the optimization model repeatedly on
smaller parts of the data, since only matching of students and quanta that be-
long to the same subject combination appears purposeful. Therefore input data
S{f1,f2} and I{f1,f2} is divided accordingly as well as corresponding weight ma-
trices W{f1,f2}.
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Allocating residual course places Recalling that the courses Ci assigned to a
quantum i are usually just above 20 ECTS and that possibly not all these courses
are relevant for a student s matched to quantum i, it can be expected that a
sizable number of course places remain free after the above assignment phase.
These places will be allocated by a Round Robin procedure to any students left
with less than 20 ECTS assigned courses.
Students are sorted as follows: To facilitate timely graduation, at first, all stu-
dents requiring at most 30 ECTS for completing their program (not counting the
courses allocated in the assignment phase) are selected and sorted in increasing
order of missing ECTS. All other students are appended to this sequence and
sorted in increasing order of ECTS received in the above assignment phase, which
reflects a max-min fairness criterion.
Considering students in this sequence, we take the first student and assign
her/him a section of a course that is not fully booked, is feasible for the stu-
dent w.r.t. the study program, and that does not overlap with any previously
allocated courses. Among these, a course is randomly selected from those which
are prescribed for the earliest term. If no allocation is possible, the student is
removed from the sequence, otherwise, the student is reinserted according to the
sorting criteria. One can also choose to remove students (except those close to
graduation) from the sequence once their workload exceeds 20 ECTS or another
bound set by the university administration.

5 Computational Insights

5.1 Data from Graz University

We applied our model to a subset of the courses at the University of Graz, specif-
ically those which form the curriculum of the teacher education study program.
As stated, the curriculum requires the choice of two out of 28 possible different
subjects (e.g. English and German). Notice that the choice of subject pairs is
not at all evenly distributed as depicted in Figure 1b. On the contrary, all com-
binations of the most prominent eight subjects account for more than 50% of
the students, which have therefore been the focus of the study.

Table 2: Scope of the study.
Subjects 8
Courses 767
Sections 1,454
Students 2,240
Quantum size ∆ 5
Quanta 454

As summarized in Table 2, the supply side consists of 1454 different sections
belonging to 767 courses and we seek to assign 454 quanta to them. The courses
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belong to one of 8 subjects (English, German, History, Geography, Chemistry,
Physics, Mathematics, Biology), constituting more than half of all students en-
rolled in teacher education. The quanta are established using historical anonymized
examination data of all students enrolled in the study program, whereas courses
and number of sections are taken from a different source representing the cur-
ricula.
The examination data further serves as the basis for the derivation of the delay
factor of a course (as outlined in Section 4.2). As depicted in Figure 1a based
on ECTS (not weekly hours) over 40% of the courses are passed late using a
threshold of T = 30 and 79 courses are preponed entirely. Consequently, taking
into account delayed courses Cd reflects actual student behavior in reality. The
surprisingly high fraction of delayed courses indicates that (i) overlaps of courses
may indeed be a reason for slowed-down progress (as often claimed by students,
but sometimes questioned but other involved persons) and (ii) an optimized
timetable should take the delay of courses into account for increasing study
performance.

0 0.2 0.4 0.6 0.8 1
0

100

200

300

400

n u
m
be

r
of

co
ur
se
s

(a) Histogram of delay values.

0

100

200

300

{f1, f2}

St
ud

en
ts

en
ro
lle

d
in
{f

1
,f

2
}

(b) Distribution of chosen subject pairs.

Fig. 1: Information derived from examination data.

5.2 Preliminary Results

We conducted our tests on a PC with processor Intel Core i5-9500 with 3.00GHz
and 32GB RAM. The data processing and preparatory computation steps as
well as the mathematical models have been implemented in Python and solved
using the Gurobi solver (version 9.0.0). The weighting factors α and β are both
set to 1, though this setting will be the subject of further discussions with all
stakeholders.
Initially, a feasibility check concerning the overall section capacities is carried out.
Based on the provided data we compare for each course the number of available
places with the required places resulting from the given number of students for
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each term and subject combination. In case of a shortfall, additional sections are
introduced such that at least a general coverage is possible, without considering
conflict freeness.
At the time being, we can give results for Phase 1 and 2, while Phase 3 could
not be carried out yet due to a lack of data. However, the first two phases are
considered to be the essential part, since the final output, and the timetable’s
applicability respectively is largely based on the quality reached in Phase 2,
building upon the output of Phase 1. Moreover, from a computational point of
view, Phase 2 poses the major obstacle, while Phases 1 and 3 will not be a hurdle
for practical solvability. Within the given scope we solve the current test case
yielding 537,330 ILP variables (where 469,743 are binary) and reach preliminary
results as follows.

Table 3: Results of the first two phases.

subjects Π time[s] obj. part 1 obj. part 2 gap[%]
8 20 8.5 632 2,307 0.00
8 15 9.4 573 2,611 0.00
8 10 10.0 651 2,778 0.00
8 5 16.8 733 2,941 0.00

Examining the results of the case and analyzing different parameter settings we
can make the following observations:

– The test case concerning the scope in Table 2 can be solved to optimality
in a surprisingly short running time despite the considerable size of the ILP
model.

– Reducing the parameter Π, which is limiting the number of sections at the
same time period, results in decreasing solution quality and at some point,
the instance is not feasible anymore (e.g. Π = 4 for the combinations of 8
subjects). Table 3 shows for different Π the number of integer and binary
variables the ILP-model of the test case comprises, the objective function
value, and the elapsed computation time (in seconds).

– Extending the scope, however, to a larger set of subject combinations may
result in infeasibility of the problem - even with the addition of just one single
subject (i.e. with all the associated pairs of subjects). If the problem remains
feasible, different numbers of variables are generated for different added sub-
jects. Also, the new solution values vary a lot as well as the computation
times (see examples in Table 4).
An obvious reason for this behavior is that the amount of enrolled students
and the course structure is subject-related. A thorough examination of this
relationship is subject to further investigation.

– In general it is a surprise, that computation time is not an issue, while
feasibility is.
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Table 4

added subject time[s] obj. gap[%] int. variables (binary)
Informatics 9.0 4,003 0.00 589,515 (485,538)

French 34.85 3,924 0.00 580,658 (477,011)
Nutrition 51.81 3,978 0.00 581,493 (477,696)
Sports - infeasible - 635,892 (530,025)

For the practical application of our solution approach to the full planning prob-
lem with 28 subjects we currently see five measures for dealing with the inherent
infeasibility issue:

(i) Increase the number of options by adding more sections.
(ii) Increase the capacity cap(c) of each section of course c.
(iii) Restrict the optimization model to a subset of the most frequently chosen

subjects (up to 10 or 12) and add less popular subjects by a manual process
(basically as it is done now).

(iv) Omit pairs of subjects from consideration which are chosen by a very small
number of students.

(v) Reduce the number of ECTS for which collision-free courses are provided by
the planning system for every student.

While measures (iii) and (iv) will be unavoidable and easily accepted, there is
an interesting cost/quality trade-off involved in the decision for (i) and (ii): The
former causes additional costs (assuming that external teachers are available)
whereas the latter comes for free but diminishes teaching quality. Thus, it will
be very interesting for the decision-makers to be informed about the effect of
employing certain levels of measures (i) and (ii). In particular, it will be inter-
esting to identify a suitable subset of crucial courses for which these measures
should be applied to reach feasibility. Measure (v) is easy to implement and does
not incur any direct cost, but it compromises the original goal of this project.

6 Conclusions

In this paper, we developed a solution approach for a complex university timetabling
task arising at the University of Graz, Austria. The main features which make
our problem different from standard university timetabling instances are the
following:

1. Each student is enrolled in two different subjects selected arbitrarily from a
wide range of available subjects.

2. Student’s progress does not follow a strict term pattern but may exhibit
highly irregular behavior, including gaps and deviations from the prescribed
ordering of courses.
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3. Timetable planning is done at an early stage when the data of actual stu-
dent numbers and their progress status, as it is required for finally assigning
courses to students, is still subject to major changes.

4. Most courses are offered in several parallel groups, which requires the section-
ing of students to reach a conflict-free timetable for a highly heterogeneous
set of students.

Our solution approach consists of three phases. Two of them solve variants of the
linear assignment problem, extended by conflict constraints. The main planning
task (Phase 2) is performed by an intricate integer linear program (ILP). In this
way, we managed to determine feasible timetables offering conflict-free course
allocations for the projected student body. The data for the final allocation of
individual students are still missing, but the handling of the main computational
hurdle, namely the solution of a complex ILP, can be illustrated by our com-
putational results. These reveal in particular that the choice of subjects given
their course structure and amount of enrolled students per term has a non-trivial
impact on solvability, computation time, and solution quality and is of interest
for further investigation.
We expect to employ the full solution approach in practice for the planning task
in the next year. It will also be interesting to investigate additional options for
the objective function since different stakeholders have different ideas about the
appropriate quality measure of a timetable.
In the future, we could also try to rate the difficulty of the problem according
to the ’Complexity’ as introduced in [9].
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