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1 Introduction

Strategic capacity planning [9,1] for trains in high-speed railways introduces an
important problem that is of high interest for the planning of future railway
infrastructure in the Czech Republic. We are working on optimization meth-
ods [3,4,2] for the planning of train capacities to assess and discuss additional
connection sites between large cities and to devise suitable train timetables based
on a fixed clock timetabling. We propose an integer linear programming for-
mulation based on an arc-based multi-commodity network flow model and a
space-time graph [12].

The demand of passengers represents the crucial input part of our model. The
future demand will allow us to compute future supply for train capacities well.
Prediction of the correct demand is one of the critical components in transport
planning [10], which is essential for the efficiency of transport infrastructures [13].
To handle this problem, we are using new big data from mobile operators in the
Czech Republic [5], which were collected to study the behavior of passengers
along with the planned high-speed infrastructure (Praha-Brno-Ostrava). Con-
sideration of data from mobile operators is a relatively new phenomen [6]. We
are not aware that mobile operators’ big data was applied for long-term capacity
planning in high-speed railways. Given that mobile operators provided us with
the data with a rich set of characteristics, we have applied them for the ini-
tial demand estimate to be included in our mathematical programming models.
Currently, our approach uses the data provided by mobile operators directly. It
has various drawbacks, such as insufficient data coverage at border connections3,
multimodal transportation at some edges4, or missing considerations of future
demand changes. To get more accurate demand prediction, we plan to combine

3 The data from mobile operators were required to include passenger trips containing
one of the edges Praha-Brno, Brno-Ostrava, or Praha-Ostrava only.

4 Train track and highway are too close at the edge between Brno and Ostrava, which
results in inaccurate data by mobile operators.
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big data from mobile operators with the small data from questionnaires and
statistics and device models of future passenger demands.

Our proposed model concentrates on rolling stock management and alloca-
tion while considering preliminary timetables and demands available from mobile
operators’ big data. This ongoing work will discuss the results of our current ap-
proach implemented in CPLEX Optimization Studio, which allows us to compute
the optimal solution to the problem.

2 Problem description

Let us discuss the problem we are considering in our current work. We want
to decide proper types and the number of trainsets, which is the typical rolling
stock management [3] task. So, the first rolling stock management part of our
problem lies in computing two types of trainsets used for the entire network and
their number. Two trainset types are required to achieve a better investment
cost due to a larger number of pieces of each type given by its capacity.

To decide so, we must know how much this particular set would cost if we run
high-speed transportation with chosen trainset types. Therefore, we will consider
rolling stock allocation [7] as well. Our rolling stock allocation problem consists
of assigning trainsets to connections based on predefined train timetables.

Terminology The route connecting two terminal stations is called a line. The
line is divided into several segments, which are defined as the route between two
adjacent stations. An example may be the line Wien → Prague, divided into
segments Wien → Břeclav, Břeclav → Brno and Brno → Prague. Each line is
periodically served with a specific frequency, usually a day or a week-long. One
instance of the line at a given time is called connection. For example, for the
line Berlin → Wien, we may have 16 connections per day, the first connection
starting at 5:10 in Berlin and arriving at Wien at 10:00. A segment served by a
particular rolling stock piece at a particular time is called a subconnection, e.g.,
Břeclav → Wien at 9:15. An individual trainset can serve a connection, or more
trainsets can be jointed to increase the overall capacity. There are trainsets of
different type, which are currently distinguished by their capacities.

Objective The current problem is to minimize the total cost that transportation
companies would have to pay to purchase and run high-speed transportation
taking into account costs linked only to trainsets. The total cost is defined by in-
vestment cost including modernization, the variable cost depending on the trav-
eled kilometers of each used trainset, and gain from operating trainsets abroad
for each seat and each kilometer run abroad.

Constraints Based on our specification, the constraint relating to rolling stock
management is only one, specifying that it is possible to choose only two trainset
types.

On the other hand, several constraints are related to rolling stock allocation.
First and foremost, passenger demand is considered a hard constraint, with each
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subconnection having predefined passenger demand (minimal capacity). Each
subconnection must be served by at least one trainset, even if there would not
be any predefined passengers from a dataset.

Maximally two trainsets can be joined into one high-speed train with an
overall capacity not exceeding 1,000 seats. Trainsets may be joined and disjoined
only in certain stations specified in the dataset. For each station at the end
of each considered period, there must be the same number of trainsets at the
beginning of the same period. Additional constraints are related to passenger
comfort.

3 Model in example

We propose to use a multi-commodity network flow model where each trainset
type appears as a separate commodity. The model is based on the paper by
Schrijver et al. [11] where they used a multi-commodity network flow graph to
minimize the total number of rolling stock units used. They did not consider any
price calculation or restriction on trains’ capacity or length.

We will use Figure 1 for demonstration of the multi-commodity network
graph and our model. Each node is represented by a station in a given time.
Blue and red edges represent two connections. Labels of each edge refer to the
number of trainsets of each type (we have two types in our example). The source
represents the beginning of the scheduling interval where all trainsets start, and
the sink is the opposite as a terminal node for all trainsets.

There are two types of variables. The integer variable is defined for each edge
and trainset type and specifies the number of trainsets. The boolean variable for
each trainset type defines if a particular trainset type is used. We have proposed a
linear integer programming model based on described multi-commodity network
flow and implemented it using CPLEX Optimization Studio 12.8 [8]. In the full
version of this paper, we will discuss all constraints and the objective with their
integer linear programming model.
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Fig. 1. Simple example of multi-commodity network flow.

184



Fig. 2. Number of passengers for backbone (top) and border (bottom) connections
during the day.

4 Data set and preliminary experiments

We have demand data available from mobile operators and preliminary train
timetables provided by the Czech national railway company České dráhy, a.s..
We consider 15 stations in our problem. It includes terminal stations and stations
where the exchange of trainsets can happen. There are 12 lines, 344 connections,
and 721 edges between stations in time. Currently, we compute a solution for
one day only. Figure 2 demonstrates the number of passengers in backbone
and border connections5 based on the data from mobile operators. We can see

5 Backbone connections represent the critical railway infrastructure for high-speed
trains, and border connections represent part of the infrastructure in border regions.
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that the backbone data have reasonable demands. Still, it would be desirable
to enhance them for border connections where data from mobile operators are
insufficient because the passenger data were collected when including backbone
connections only.

In Table 1, we can see characteristics of the optimal solution, which can be
computed in approximately 1 minute. We would use 87 trainsets with 200 seats
and 31 trainsets with 500 seats. We need to say that the rolling stock part of
the problem is not very demanding because trainsets of the smallest capacity
are necessary to cover border connections, and trainsets with 500 seats cover the
maximal allowed capacity of 1,000 passengers.

We experimented with two other models based on boolean variables for
each trainset type, individual trainset and subconnections, and a path-based
model [12] with integer variables for each path and trainset type. First, we have
used a toy network with two lines. The first model could not find any solution
within 90 minutes, while our model provided a solution within 0.14 seconds. The
path-based model succeeded in finding an optimal solution within 1.98 seconds.
For the complete network, it was impossible to run the path-based model be-
cause the number of paths increased drastically in preprocessing, and it did not
fit into the memory. To conclude, both other models were shown insufficient.

5 Conclusion

In this study, we aimed to solve resource stock management and allocation prob-
lems for high-speed railways in the Czech Republic based on the big data avail-
able from mobile operators. Our current results demonstrated to the Czech na-
tional railway company attained their high interest. However, it is necessary to
enrich the current data with additional inputs corresponding with corrections of
missing demand data that have weak parts, especially at border connections. For
instance, we have now additional data about the sold tickets at particular bor-
der connections and moreover corresponding data from Transport Yearbooks on
domestic connections. Also, we need to incorporate a forecast of future diverted
and induced demand. Certainly, our current model would deserve extensions, for
example, in terms of one-week cycles rather than the current one-day. A more

Table 1. Preliminary results.

Possible trainset capacities 200, 300, 350, 400, 450, 500, 700
Selected trainset capacities 200 500
#trainsets 87 31
#served edges 607 175
Avg. distance in Czech Rep. (km) 1,036 590
Avg. distance abroad (km) 370 679
Avg. occupations (%) 21.4 47.6
#passengers 27,444 46,651
#trainset exchanges 109
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complex extension would be introduced by including the investment cost due
to the high-speed line constructions. Finally, a full body of experiments will be
presented in the final version of the paper.
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mobility – high-speed transport systems and transport behavior of the popula-
tion ID muni 1312/2017, ID CZ.02.1.01/0.0/0.0/16_026/0008430.
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