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Abstract. Sports Scheduling is a problem with many variations, re-
garding the sport type, the various hard rules that have to be obeyed
and the quality metrics that are expected to be met. Various stakehold-
ers including organizers, teams, spectators and others have interest in
acquiring high quality schedules that satisfy rules and constraints cru-
cial from their point of view. In this work we propose an approach for
solving the Sports Scheduling problem as de�ned in the International
Timetabling Competition 2021 (ITC2021). We describe the analytical
formulation of each constraint, as it can be modeled for a CP solver and
�ve moves that can be used for altering a schedule by a metaheuristic.
We also document the experience gained in trying to address the prob-
lem using heuristics, metaheuristics, Constraint Programming and the
capable ORTools CP/SAT solver. Despite the computational hardness
of the problem instances, our approach managed to achieve good results
for most of them.

Keywords: Sports Scheduling· Constraint Programming · Simulated
Annealing

1 Introduction

Sports Scheduling is the problem of constructing a tournament schedule consist-
ing of matches among competing teams that form a league. The schedule should
satisfy the constraints imposed by the tournament's rules and be `invisible' in
the sense that the various stakeholders such as organizers, teams, spectators,
and others should not have legitimate reasons to question it.

Sports scheduling exists for as long as there are sports and teams willing to
participate in tournaments with matches against each other. For some sports,
like tennis, instead of teams, individual athletes compete. Furthermore, there
are tournaments, like chess or other board games tournaments, where the actual
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matches would be hardly identi�ed as sports, in the typical sense. Esports (elec-
tronic sports), is another example of a competition for which its events should be
scheduled according to a carefully crafted plan. The same principles regarding
scheduling apply to all previously identi�ed cases of tournaments and are special
instances of the sports scheduling problem.

Several variations of tournaments exist including single round tournaments,
double round tournaments, tournaments with elimination games, compact tour-
naments (all teams have matches in every timeslot), etc. Some heuristics for con-
structing sport schedules are known for many years, like the circle [11] method
and the Berger [3] method. But when constraints are added the problem quickly
becomes very hard to solve. Such constraints might involve the avoidance of
consecutive away games for all or some teams, the enforcement of minimum
distances (number of time slots) between a match and the rematch, and many
others. In this paper, an approach of generating high quality schedules for the
compact, double round robin (2RR) type of tournament, is presented. This ap-
proach is based on several moves that keep the schedule feasible and a Constraint
Programming formulation that results in a model capable of performing com-
plex moves when no progress can be achieved otherwise. A move is eventually a
series of changes involving teams participating in a set of matches. Some moves
result in better schedules and some others may lay the foundation for performing
subsequent moves that will lead to even better schedules.

2 Related work

Several real life tournaments have been addressed using automated techniques
involving mathematical programming, constraint programming, metaheuristics
and heuristics; e.g., the Belgian soccer league [7], the Brazilian soccer tourna-
ment [16], the Finnish national youth ice hockey league [14], the Chilean soccer
leagues [1], the South American quali�ers for FIFA 2018 [6], the Icelandic football
league [8].

Lewis and Thompson, in [12] present the association of the sports scheduling
problem to the a graph coloring problem. Moreover, an edge coloring presenta-
tion of the problem is available at [10].

Regarding the exploration of the solution space in [4] it is established that
the solution space is not connected by the usually used neighborhood structures,
i.e. it's impossible starting from a feasible timetable to reach all other possible
timetables just by performing the usual heuristic moves proposed in the bibli-
ography, and [9] proposed a new neighborhood operator to handle this issue.

Since sports timetabling usually results in problems of big sizes, decomposi-
tion approaches can be advantageous. In [18] a �rst schedule then break approach
was tried. First it was decided when teams would meet, and the home advantage
is decided later. The opposite, �rst break then schedule approach can be seen at
[17], �rst it is decided where each team plays at home and the teams are paired
later. An e�ort on minimizing breaks is available at [13]. A research on feasible
home-away patterns is presented at [2].
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3 Problem Description

The problem description can be found at [19] and it refers to tournaments cat-
egorized as time-constrained double round robin. Time-constrained or compact
means that the timetable uses the minimum number of time slots, i.e. in each
time slot all teams play in matches.

3.1 The Base Constraints

The base constraints for each tournament are the format of the tournament. All
tournaments are in double round robin format, i.e. each team has two matches
against every other team, one at home and one away. Some of the tournaments
contain the Phase rule; the timetable is divided in half (two phases), a match
and its rematch must be in a di�erent phase. All tournaments are compact.

3.2 The Hard and Soft Constraints of ITC2021

All type of constraints can be either hard or soft as of the type attribute. Hard
constraints must be satis�ed and soft constraints create deviations penalized in
the objective function. There are 9 types of constraints in 5 di�erent constraint
categories.

Capacity Constraints Capacity constraints regulate the matches played by a
team or a group of teams at home or away.

CA1 constraints regulate the number of matches a team plays at home or
away in speci�c slots.

CA2 constraints regulate the number of matches a team plays at home or
away in speci�c slots against speci�c teams.

CA3 constraints regulate the number of matches a team plays at home or
away in a sequence of slots.

CA4 constraints regulate the number of matches a group of teams play at
home or away in speci�c slots against speci�c teams.

Game Constraints Game constraints enforce or forbid speci�c matches in
certain slots.

GA1 constraints deal with �xed or forbidden matches to slots assignments.

Break Constraints If a team plays a game with the same home-away status
as its previous game, we say it has a break.

BR1 constraints limit the breaks a team has in speci�c slots.
BR2 constraints limit the breaks a group of teams has in speci�c slots.

Fairness Constraints Fairness constraints attempt to increase fairness and
attractiveness of a tournament.

FA2 constraints limit the di�erence in played home games of set of teams.
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Separation Constraints Separation constraints regulate the number of slots
between matches involving the same pairs of teams.

SE1 limits the di�erence between matches and rematches of the same teams.

4 A Pragmatic Approach

4.1 Heuristic Moves

We have identi�ed �ve di�erent heuristic moves that create a new timetable from
an existing one. The new timetable conforms to the base constraints. In Table 1
a timetable is presented, this timetable will be used as a starting timetable for
the examples for all available moves.

Table 1. Double round robin tournament created with the circle method.

1 2 3 4 5 6

1-4 1-3 1-2 4-1 3-1 2-1
2-3 4-2 3-4 3-2 2-4 4-3

� SwapHomes. Two teams t1 ̸= t2 are selected, we swap match t1 − t2 with
t2 − t1. Two matches are a�ected. An example can be seen in Table 2.

Table 2. Timetable 1 after SwapHomes move for teams 1 and 4.

1 2 3 4 5 6

4-1 1-3 1-2 1-4 3-1 2-1
2-3 4-2 3-4 3-2 2-4 4-3

� SwapRounds. Two slots s1 ̸= s2 are selected, we swap the matches of s1
with those of s2. For a tournament of T teams, T matches are a�ected.
An example can be seen in Table 3. For tournaments with the Phase rule
swapping slots is allowed only on slots of the same phase.

� Swap Teams. Two teams t1 ̸= t2 are selected, we swap team t1 with t2 in all
matches. For a tournament of T teams, 4(T − 1) matches are a�ected. An
example can be seen in Table 4.

� PartialSwapTeams. Two teams t1 ̸= t2 are selected, we swap opponents of
team t1 with those of t2 in all slots and also keep in mind that if a match is
already scheduled to also schedule its rematch. For a tournament of T teams,
4(T − 1)− 2 matches are a�ected. An example can be seen in Table 5.
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Table 3. Timetable 1 after SwapRounds move for slots 1 and 5.

1 2 3 4 5 6

3-1 1-3 1-2 4-1 1-4 2-1
2-4 4-2 3-4 3-2 2-3 4-3

Table 4. Timetable 1 after SwapTeams move for teams 1 and 2.

1 2 3 4 5 6

2-4 2-3 2-1 4-2 3-2 1-2

1-3 4-1 3-4 3-1 1-4 4-3

� PartialSwapRounds. One match m is selected and moved from slot A to slot
B, matches involving teams fromm are moved to slot A, an ejection sequence
between slots A and B occurs until each team participates in one match per
slot. For tournaments with the Phase rule the match m is allowed only to
move to a slot in the same phase. The number of matches a�ected varies.
An example can be seen in Table 6.

4.2 Simulated Annealing

Simulated Annealing [21] is a well-known optimization technique that manages
to produce near optimal results for a variety of problems. It escapes local minima
by accepting inferior solutions with high probability during early stages of the
process. This probability diminishes as the process continues. In particular, the
acceptance probability of an inferior solution at step k of the procedure is given

by ef(cur)−f(new)

Tk
where f(cur) is the cost of the current best solution, f(new) is

the cost of the new solution and Tk is the temperature after k decreases from an
initial temperature T . The temperature is decreased based on the cooling factor
a, using the formula Tk = aTk−1.

There seems to be some art in calibrating Simulated Annealing to get the
best possible results [5]. In our approach, after trial and error the following values
were chosen, T = 5, a = 0.999. The procedure restarts when the temperature of
0.1 is reached.

4.3 Constraint Programming Formulation

Decision Variables For the set of teams T, the set of slots S, with S as the
number of available slots and T as the number of teams we de�ne the following
binary decision variables.

199



6 A. Dimitsas et al.

Table 5. Timetable 1 after PartialSwapTeams move for teams 1 and 3.

1 2 3 4 5 6

1-2 1-3 1-4 2-1 3-1 4-1
4-3 4-2 3-2 3-4 2-4 2-3

Table 6. Timetable 1 after placing match 1-2 in slot 5. Note that in small tournaments
the e�ect is always a swap of the slots, but in larger tournaments only some of the
matches will exchange slots.

1 2 3 4 5 6

1-4 1-3 3-1 4-1 1-2 2-1
2-3 4-2 2-4 3-2 3-4 4-3

xi,j,s =

{
1, If team i plays against team j in slot s
0, Otherwise

∀i, j ∈ T, i ̸= j,∀s ∈ S

(1)
To monitor the home away pattern we de�ne:

yi,s =

{
1, If team i plays at home in slot s
0, Otherwise

∀i ∈ T,∀s ∈ S (2)

We enforce the home-away pattern to follow the timetable:

yi,s =

T∑
j=1

xi,j,s ∀i ∈ T, i ̸= j,∀s ∈ S (3)

In all instances, constraints regarding breaks do not take into consideration
if the breaks occur at Home or Away, so we just have to keep track in which
slots a general break occurs:

zi,s =

{
1, If team i has a break in slot s
0, Otherwise

∀i ∈ T,∀s ∈ S (4)

We enforce the break pattern to follow the home-away pattern:

zi,s =

{
1, yi,s = yi,s−1, s > 1
0, s = 1

∀i ∈ T,∀s ∈ S (5)

Base Constraints Each team must play exactly one match at home against
each other team:

S∑
s=1

xi,j,s = 1 ∀i, j ∈ T, i ̸= j (6)
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To satisfy the compactness rule each team plays one match in each slot:

T∑
j=1

(xi,j,s + xj,i,s) = 1 ∀i ∈ T, i ̸= j,∀s ∈ S (7)

For instances with the phase rule a match and its rematch must be in di�erent
phases:

S/2∑
s

(xi,j,s + xj,i,s) = 1 ∀i, j ∈ T, i < j,∀s ∈ S (8)

CA1 Constraints Each CA1 constraint with team tc in �teams� �eld, with Sc
the set of teams in �slots� �eld and maxc in �max� �eld, triggers a dc deviation.

CA1 with mode=�H�:

dc =
∑
s∈Sc

ytc,s −maxc (9)

CA1 with mode=�A� and Sc the size of Sc:

dc = Sc −
∑
s∈Sc

ytc,s −maxc (10)

CA2 Constraints Each CA2 with team t1 in �teams1� �eld, with Sc the set of
slot in �slots� �eld, with Tc the set of slots in �teams2� �eld, with maxc in �max�
�eld triggers a deviation dc.

CA2 with mode=�H�:

dc =
∑
t2∈Tc

∑
s∈Sc

xt1,t2,s −maxc (11)

CA2 with mode=�A�:

dc =
∑
t2∈Tc

∑
s∈Sc

xt2,t1,s −maxc (12)

CA2 with mode=�HA�:

dc =
∑
t2∈Tc

∑
s∈Sc

(xt1,t2,s + xt2,t1,s)−maxc (13)

CA3 Constraints Each CA3 with Tc1 the set of teams in �teams1� �eld, with
Sc as the slots in �slots� �eld, with Tc2 the set of teams in �teams2� �eld and
maxc in �max� �eld triggers deviations dc for each team in Tc1 and for all slot
sequences Sc of size intp in �intp� �eld.

CA3 with mode=�H�:

dc =
∑

t2∈Tc2

k+intp∑
s=k

xt1,t2,s −maxc ∀t1 ∈ Tc1, t1 ̸= t2, 1 ≤ k ≤ Sc − intp (14)
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CA3 with mode=�A�:

dc =
∑

t2∈Tc2

k+intp∑
s=k

xt2,t1,s −maxc ∀t1 ∈ Tc1, t1 ̸= t2, 1 ≤ k ≤ Sc − intp (15)

Special case: In all instances there are at most two Hard CA3 constraints,
one with mode=�H� and the other with mode=�A�, Tc1 = Tc2 = T, Sc = S,
maxc is always 2 and intp is always 3. If both rules exist then the home-away
patterns �HHH� and �AAA� cannot appear, so for those instances a team cannot
have two breaks in a row:

zi,s + zi,s−1 ≤ 1 ∀i ∈ T,∀s ∈ S, s > 2 (16)

CA4 Constraints Each CA4 with mode2=�GLOBAL� triggers a deviation dc
equal to the sum of the matches between the set of teams Tc1 in �teams1� �eld
and the set of teams Tc2 in �teams2� �eld in all slots of the set Sc in �slots� �eld
over maxc in �max� �eld.

CA4 with mode2=�GLOBAL� and mode1=�H�:

dc =
∑
s∈Sc

∑
t1∈Tc1

∑
t2∈Tc2

xt1,t2,s −maxc t1 ̸= t2 (17)

CA4 with mode2=�GLOBAL� and mode1=�A�:

dc =
∑
s∈Sc

∑
t1∈Tc1

∑
t2∈Tc2

xt2,t1,s −maxc t1 ̸= t2 (18)

CA4 with mode2=�GLOBAL� and mode1=�HA�:

dc =
∑
s∈Sc

∑
t1∈Tc1

∑
t2∈Tc2

(xt1,t2,s + xt2,t1,s)−maxc t1 ̸= t2 (19)

Each CA4 with mode2=�EVERY� triggers a deviation dc for each slot of the
slots set Sc in �slots� �eld equal to the sum of the matches between the set of
teams Tc1 in �teams1� �eld and the set of teams Tc2 in �teams2� �eld over maxc

in �max� �eld.
CA4 with mode2=�EVERY� and mode1=�H�:

dc =
∑

t1∈Tc1

∑
t2∈Tc2

xt1,t2,s −maxc t1 ̸= t2,∀s ∈ Sc (20)

CA4 with mode2=�EVERY� and mode1=�A�:

dc =
∑

t1∈Tc1

∑
t2∈Tc2

xt2,t1,s −maxc t1 ̸= t2,∀s ∈ Sc (21)

CA4 with mode2=�EVERY� and mode1=�HA�:

dc =
∑

t1∈Tc1

∑
t2∈Tc2

(xt1,t2,s + xt2,t1,s)−maxc t1 ̸= t2,∀s ∈ Sc (22)
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GA1 Constraints Each GA1 triggers a deviation dc calculated as the sum of
matches of the set Mc in �eld �meetings� which occur in set of slots Sc in �eld
�slots� under minc in �eld �min� or over maxc in �eld �max�.

dc =
∑
s∈Sc

∑
t1,t2∈Tc

xt1,t2,s −maxc (23)

dc =
∑
s∈Sc

∑
t1,t2∈Tc

xt1,t2,s +minc (24)

BR1 Constraints Each BR1 with tc the team in �teams� �eld, triggers a
deviation dc equal to the sum of teams tc breaks in set of slots Sc in �slots� �eld
over maxc in �max� �eld.

dc =
∑
s∈Sc

ztc,s −maxc (25)

BR2 Constraints In all instances where a BR2 constraint exists �eld �teams�
contains all teams and �eld �slots� contains all slots except the �rst slot (as a
team cannot have a break in the �rst slot). As such, a BR2 constraint triggers a
deviation dc equal to the sum of all breaks of all teams over max in �max� �eld.

dc =
∑
t∈T

∑
s∈S

zt,s −maxc (26)

FA2 Constraints In all instances where an FA2 constraint exists �eld �teams�
contains all teams and �eld �slots� contains all slots. As such, an FA2 constraint
triggers deviations dc for each pair of teams equal to the largest di�erence in
played home games over all slots more than intp in �intp� �eld.

dc =
max
s ∈ S (

s∑
m=1

yi,m −
s∑

m=1

yj,m − intp; 0) ∀i, j ∈ T, i < j (27)

SE1 Constraints For SE1 we need to keep track of the distance between
matches and rematches for all combinations of the set of teams Tc in �eld �teams�.
Each combination of teams triggers a deviation dc equal to the sum of the number
of time slots less than min in �min� �eld between the match and the rematch.

dc =

∣∣∣∣∑
s∈S

s ∗ xt1,t2,s −
∑
s∈S

s ∗ xt2,t1,s

∣∣∣∣−minc t1 ̸= t2,∀t1, t2 ∈ Tc (28)

Objective Function Hard constraints must not generate any deviation. Soft
constraints' deviations are multiplied by pc denoted by the �eld �penalty� and
summed. Deviations under zero are ignored.

min
∑
c∈C

dc ∗ pc (29)
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Employing the CP/SAT Solver of ORTools The overly constrained nature
of sports scheduling made it di�cult for traditional Constraint Programming
solvers to even reach a feasible solution let alone a good one. In our approach we
used the ORTools [15] CP/SAT solver that allowed us to formulate the problem
using CP terms. The distinctiveness of the CP/SAT solver is that it reformulates
internally the CP model into a SAT (satis�ability) model that seems to be better
adapted to the nature of the sports scheduling problem.

4.4 A Hybrid Approach

An initial solution satisfying the base constraints is constructed using CP/SAT
and Hard constraints are perceived as soft and Soft constraints are ignored. The
Simulated Annealing process tries to bring the solution in the feasible space. If
a feasible solution is found then Hard constraints become mandatory and Soft
constraints are activated. Each time the simulated annealing process terminates
an improvement process using CP/SAT attempts to improve the current solu-
tion. In order to achieve this we randomly select a number of teams, or a number
of slots, or a number of games, or some combination of the above and keep them
�xed while the rest of the current solution is allowed to change. In Figure 1 a
�owchart of the process is presented.

5 Experimental Results

5.1 Datasets

The problem instances of ITC20214 are formatted with the RobinX XML data
format [20]. The instances were released in three phases (Early, Middle, Late)
and each set contains 15 instances. All instances are in double round robin format
of 16, 18 or 20 teams. Some instances contain the Phase rule. Not all constraints
make an appearance in every tournament.

5.2 Results

The hybrid process was able to produce solutions for 37 out of 45 instances. The
objective of the solutions can be seen in Table 7. Solution �les are available at
our github5 repository.

6 Conclusions

Sports scheduling has several facets that make it an interesting and di�cult
problem. Sports scheduling problems are proved to be, in practice (and in the-
ory), hard to solve. Sometimes even �nding a feasible solution or proving that

4 https://www.sportscheduling.ugent.be
5 https://bit.ly/3wtrW4i
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Create initial timetable 
with CP/SAT enforcing 
2RR, Compactness, 

Phases

Are  
Constraints 
Satisfied?

Ignore Soft Constraints
Hard Constraints ?  Soft Constraints  

Simulated Annealing

Enable Hard Constraints 
Activate Soft Constraints

Try improvement with 
CP/SAT

Simulated Annealing

Try improvement with CP/SAT

Termination 
Criteria

met

Schedule

Termination 
Criteria

met

No feasible 
schedule found

Simulated 
Annealing

Stuck

Simulated
Annealing

Stuck

No

Yes

Fig. 1. Flowchart of the hybrid process.

such a solution does not exist is extremely challenging. We had the opportunity
to assert this during our participation in the ITC2021 competition.

In this paper, an approach to solving the problem was presented that involved
modeling of the problem using Constraint Programming. A Simulated Annealing
solver employing small and large moves was implemented. Small moves, are often
inspired by the perspective as a graph of the problem, make schedule changes
that keep the schedule feasible, but are rather local. Large moves �x randomly
selected teams, matches or slots and let the other ones free to move. We managed
to receive good results and we �rmly believe that our approach can be even more
successful in addressing sports scheduling problems by using more processing
power and more sophisticated strategies than the random selection for �xed
objects.

Acknowledgements We acknowledge support of this work by the project
�Dioni: Computing Infrastructure for Big-Data Processing and Analysis.� (MIS
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Table 7. Results after three hours of execution time for each instance using the hybrid
process. Objective is presented as the tuple (deviation of hard constraints, penalty of
soft constraints).

Instance Objective Instance Objective Instance Objective

Early 1 0, 512 Middle 1 17, - Late 1 0, 2234
Early 2 0, 266 Middle 2 48, - Late 2 0, 5680
Early 3 0, 1354 Middle 3 0, 12170 Late 3 0, 3004
Early 4 6, - Middle 4 0, 7 Late 4 0, 0
Early 5 5, - Middle 5 0, 732 Late 5 39, -
Early 6 0, 3957 Middle 6 0, 1900 Late 6 0, 1440
Early 7 0, 9644 Middle 7 0, 2792 Late 7 0, 3009
Early 8 0, 1614 Middle 8 0, 301 Late 8 0, 1375
Early 9 0, 448 Middle 9 0, 1015 Late 9 0, 1108
Early 10 32, - Middle 10 1, - Late 10 6, -
Early 11 0, 8189 Middle 11 0, 2956 Late 11 0, 511
Early 12 0, 1025 Middle 12 0, 1596 Late 12 0, 7218
Early 13 0, 380 Middle 13 0, 780 Late 13 0, 3576
Early 14 0, 63 Middle 14 0, 1619 Late 14 0, 1650
Early 15 0, 4470 Middle 15 0, 1833 Late 15 0, 80

No. 5047222) which is implemented under the Action �Reinforcement of the Re-
search and Innovation Infrastructure�, funded by the Operational Programme
�Competitiveness, Entrepreneurship and Innovation� (NSRF 2014-2020) and co-
�nanced by Greece and the European Union (European Regional Development
Fund).
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