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Abstract. This paper describes a software component that was devel-
oped to solve the energy aware production scheduling problem. Firstly,
day-ahead energy prices and energy production mix are forecast us-
ing publicly available data. Secondly, a Constraint Programming (CP)
scheduling model was developed in order to minimize production cost
and CO> emissions. The paper presents a hybrid methodology to fore-
cast day ahead energy prices, a simplified CP model and preliminary
results from the application of energy aware scheduling algorithms to a
3D additive printing industrial production use case.

Keywords: production scheduling - Constraint Programming - energy
price forecasting

1 Introduction

Emerging industrial sustainability domain dictate new production efficiency in-
terventions since manufacturing plants are facing increasing pressure to reduce
their carbon footprint, driven by concerns related to energy costs and climate
changes. To create an energy sustainable environment in the industrial produc-
tion ecosystem multiple aspects should be taken into account and a hierarchical
decision-making process should be implemented. Supply chain, production plan-
ning and scheduling and maintenance planning inter-wind with floor-shop energy
monitoring, gas emissions tariffs tracking and energy market prices to create a
sustainable manufacturing system. In this paper we focus on the production
planning and scheduling aspect where day-ahead energy prices are forecast and
used.
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2 Related work

Customer Environmental Awareness (CEA) urge energy-intensive manufactur-
ers into creating an energy saving strategy. In [13], several mathematical models
have been developed to support enterprises that are facing choices of self-saving,
shared savings and guaranteed savings to determine the optimal strategies of
improving energy efficiency when CEA is considered. At production level, pro-
duction scheduling is critical in decision making process while been computation-
ally demanding and sensitive on data availability and credibility. Many decision
support approaches has been proposed. During the FP7 ARTISAN project an
energy-aware hierarchical optimization DSS that used an Iterated Local Search
with application to the textile industry was implemented [14]. A rescheduling
method is proposed to tackle the problem of reducing energy consumption when
resolving dynamic flexible job-shop scheduling problem under machine break-
downs [II]. In [4], a hybrid mathematical model and an NGSA-II multi-objective
genetic algorithm is used to address integrated production scheduling, mainte-
nance planning and energy controlling for sustainable manufacturing systems. A
recent, trend is the collaboration between manufacturing enterprises and energy
providers. In [12], a multi-agent architecture aimed at elaborating predictive and
reactive energy-efficient scheduling through collaboration between cyber physi-
cal production and energy systems is proposed. A framework of data-driven sus-
tainable intelligent /smart manufacturing based on demand response for energy-
intensive industries is proposed in [§] where a framework is implemented to
support multi-level demand response models that address machine, shop-floor
and factory levels. A framework to allow collaboration between energy providers
and manufacturing companies is proposed in [10]. Energy price forecasts are
signaled to the manufacturers and an adaptive production scheduling approach
considering the power usage of manufacturers in response to time-varying energy
prices is presented.

3 Day Ahead Energy Price Forecasting

Electricity energy prices and source mix varies based on the time of the day
and the period of the year. Synchronizing energy hungry production tasks with
“sreen” energy availability is of outmost importance for sustainable production.
To achieve sustainability, the variability of the energy production should be
incorporated in the production scheduling process. Fig. [[|presents a typical intra-
day electricity production and demand variability [15].

To implement a forecast on the day ahead energy cost data from multiple
sources have to be acquired. In addition, for every supported energy market, a
different forecast model should be created as prices per market usually follow
different patterns. The implemented algorithms use as input the following data:

1. Electric energy production data
(a) Day ahead historical predictions
(b) Realized historical production
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Fig. 1. Typical Electricity Production variability [15]

(c) Connected energy markets predictions if available
(d) Published energy production estimations
2. Electric energy demand data
(a) Day ahead historical demand predictions
(b) Realized historical consumption
(c) Up and Down Reserves
(d) Connected energy markets predictions if available
(e) Published energy demand by energy market operator
. System Marginal Prices per energy market supported
(a) Day ahead historical predictions
(b) Realized historical SMP
(c) Connected energy markets SMP if available
4. Weather data
(a) Temperature, wind speed, solar radiation etc.
(b) Outside temperature, relative humidity, etc.
5. Miscellaneous data
(a) Holidays, working days, weekdays, year period

All input was sourced from publicly available data sources. We performed a
feature selection analysis [3] to determine the most important features from the
available data sets. Fig. [2| present the features importance for the prediction of
the energy prices. It can be observed that due to the intense variability in the
behaviour of the energy market players the most important feature component is
the mean price of the last 7 days, which was not the most significant component
if the same analysis was performed some years ago when the energy market
was more stable . Multiple forecasting algorithms were used to create a hybrid
ensemble prediction model that exhibits a more robust performance compared
to individual forecasting algorithms. The individual forecasting algorithms that
were used are regression methods (OLS, Ridge, Lasso) [2], Tree based methods
(Random Forest) [9] and RNN(LSTM) [7]. Fig. [3| shows a visual representation
of the predicted System Marginal Price (SMP) for the day-ahead Greek Energy
Market versus the actual realized values for the Greek energy market.
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4 Energy-aware production scheduling problem

The Production Scheduling Component is part of the ENERMAN Intelligent
Decision Support System and implements a number of energy aware produc-
tion mapping and scheduling algorithms. The component provides as output the
assignment and scheduling of jobs to machines, machine operational mode per
task and produces the estimated total energy consumption, energy cost and the
estimated total C'Oy emissions for the produced solution.

The Production Scheduling Component expects in the final version the fol-
lowing inputs:
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Fig. 2. Features Importance Analysis

Fig. 3. Hybrid Energy Market Price Forecasting
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1. Task related data
(a) Energy consumption per task for each compatible machine
(b) Execution time for each compatible machine and operation mode
(c) If it is an obligatory or optional job
(d) Job execution flexibility (availability, deadline, time windows)
2. Machine related data
(a) Energy consumption function at different operational states
(b) Machine availability (planned maintenance, operating personnel etc)
(c) Machine pre-allocated capacity
3. Production description data
(a) Feasibility of schedulable time periods (Available working days & hours)
(b) Time horizon and related penalties if not a schedule meets makespan
requirements
(c) Dependencies between tasks
(d) Intermediate products storage availability and feasible time windows
(e) Transfer time and energy cost to move intermediate products between
machines / sites
4. Energy prices per hour for the relative energy markets
5. Energy production mix per hour for the relative energy markets

Some of the implemented heuristics and ILP algorithms are based on ideas
presented in [6], [I] and [5] but are outside the scope of the current paper. In the
current paper, a reduced version of a Constraint Programming model to solve
the problem is presented. The CP model only supports one operational mode
per machine and 2b, 3b-3e inputs are ignored. The model will be extended in
the future to support the full problem definition.

Let T ={1,2,...,t} be a number of independent non-preemptive tasks and
M = {1,2,...,m} be a set of heterogeneous machines. The goal is to allocate
and schedule all tasks to the machines while minimizing the total cost and/or
the CO5 emissions. Each task can only be executed on a subset M; C M of the
available machines and due to the heterogeneity of the machines, the execution
time D;; and consumed energy Cj; of task ¢; on machine m; are not the same.
Let T,, C T be the tasks that can be executed on machine m. Let the variables
s; and e; denote the start and end time of task ¢;, while the variable z;; is a
binary decision variable that equals to 1 when task ¢; is assigned to machine
m;j, otherwise x;; = 0. Using s;, €;, D;; and z;; an optional fixed size interval
variable I;; is introduced for each t; € T}, and m; € M,. In addition, each task
ti € T is associated with a resource envelope type 7, € R and for each type
pair (r;,r,) € R different energy consumption Hj, and execution time Gy, is
defined to represent the setup process between tasks. Finally, for each machine
m € M and for every pair (¢;,tx) € T, a pair of Boolean variables pp,ik, Gmik 1S
introduced that help us to identify that task ¢; precedes t. The above problem
can be formulated as a CP model and optimal solution for realistic problems can
be achieved in minutes. A simplified version of the scheduling problem model is
as follows:
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Vit e T, Z Tim =1 (]‘)
me M,
Vme MVttt € Thn,i# ky pmik=1 < Tiyn + Tm = 2 (2)
Vme MVttt € Th,i# ky pmir =0 < Ty + Tpm < 2 (3)
Vme M7Vti,tk€ Tm/i;é k7 Qmikzl 8 < Sk (4)
Vme M,Vti,tke Tm,i7é k, Qmik =0 < s> s (5)

Vm e M,Vti,tk S T»1 7& kapmik = 1; Admik = 1+ 3i+Dim+Grirk S Sk (6)

Vme MVt ty€ T,i# k, pmir =1, @mik =0 s+Dpm+Grpr, < 55 (7)

Equation ensures that each task is assigned to exactly one machine. A
non-overlapped in time execution sequence between two tasks t;, tx is imposed
by @ and , when they are assigned to the same machine. The full version
of the model includes additional interval variables that act like pre-scheduled
tasks in the model and prohibit the real tasks to be scheduled during a machine
unavailability periods, adaptation to constraints () and (7) are required to take
into account these pre-scheduled tasks.

Multiple objectives are supported. For example, if we want to minimize the
total energy consumption the objective is set to

min Z xi; * Oy (8)
i€T,jeEM

If we want to minimize total C'O- emissions or the total energy cost, an
extension to the above model is required. Given a time horizon L where for each
time period [l,, 5] we have forecast the cost of energy S,; and the renewable
energy percentage P, in the available energy, for each machine m; € M and for
every task ¢; € Tj, an extra array of variables E;; is introduced that for each
point in time in the time horizon calculates the cost or the CO5 emissions. For
example, if we want to minimize the total energy cost the objective function can

be written

Given the solution of the optimization model is part of a decision process

multiple objectives can be combined using weights introduced by the user and
alternative solutions can be generated.
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Figure [] presents optimal solutions for the two aforementioned objectives
for a small example, where grey areas are prohibited scheduling periods for
each machine, blue tasks have A0 resource envelope while orange tasks have Al
resource envelope. To demonstrate the effect of energy prices we used a linear
decreasing cost per minute. It can be observed in the right Gantt chart that the
tasks are scheduled as right as possible while still satisfying where lower energy
prices are realized.
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Fig. 4. Solutions using different objective functions example.

5 Use case description and preliminary results and
conclusions

The Enerman project has multiple use cases that must be supported by the pro-
duction scheduling algorithms. Problem data originate from industrial partners
that have energy demanding production processes like automotive manufactur-
ing, semiconductor production, steel and aluminum production, food processing
and 3D additive components manufacturing. Preliminary results originate from
a 3D metallic component printing process were machines with different laser
technologies and variable performance capabilities are present in the production
environment. Each task is independent but the setup time between tasks on the
same machine depends on the powdered material used to manufacture the pre-
vious component. If the same material is used the setup time can be reduced
but the setup time never reaches 0 as some cleaning between jobs is required. In
addition, each machine has different operational points for the laser that allow
more energy efficient production to be realized by prolonging the production
time. Preliminary results that use historic production schedules and forecast en-
ergy prices for the specific energy market that the company is operating show
that if the tasks have used the introduced optimization model to produce an
alternative production schedule that aligned the more energy demanding tasks
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with low cost energy periods, a significant cost reduction could be achieved. To
assess the effect of the forecast quality, we performed a lower bound optimal
scheduling were the realized SMP values were used instead of using the forecast
values. It was observed that using the forecast energy prices a reduction of about
7% in the production cost was achieved compared to a reduction of about 9%
that was achieved if we have predicted exactly the realized SMP prices, while in
both case a model optimal solution has been found.

6 Conclusions and future work

This short paper presents preliminary work over the problem of minimizing the
cost of production scheduling in an industry setting. Industries that are heav-
ily depended on the energy cost for their operation need an automated way of
avoiding suboptimal schedules. Future prices are difficult to predict. Thus, it
is very important to generate high quality forecasts to be used as input to the
scheduling algorithm. In this context, we propose a CP model that is able to
produce good schedules taking into account the forecast electricity prices. The
CP optimization model will be extended to support dependencies between tasks,
intermediate product storage capacity constraints, time windows for intermedi-
ate product storage and time and energy cost for the transfer of the intermediate
product between machines.
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