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Abstract In this paper we introduce the call intake process for field services.
This process assigns a time window to a client’s request for a service. We
describe the characteristics of this process and the considerations that can lead
to the choice for a time window. The chosen time window will have influence
on the quality of the final planning. The quality is measured by the number of
planned requests, the lateness of planned requests, and the total travel time
for the engineers of the field service.

To investigate the effect of different strategies for the decisions in the call
intake process, we constructed challenging datasets for 25 engineers and an
average of 200 requests per day. Using simulations on these datasets, we study
the effects of several different strategies. Aspects that turn out to be beneficial
for the quality are: give preference to empty shifts, cluster tasks in geometrical
way, and use intermediate optimization.

The methods explained here are used in practice in the software created
by PCA in the Netherlands. The datasets and the simulation program are
available at https://github.com/gfpost/CallIntakeProcess.
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1 Introduction

There is a large body of literature on Vehicle Routing Problems (VRPs) with
different types of settings and constraints. For a survey on rich VRPs, see for
example [3]. Here we are interested in the area usually called ‘field service’,
where in addition to the usual set-up the shifts (working hours) of the (field)
engineers are fixed beforehand. Having fixed employee shifts might seem not
very relevant, but it is: the main objective in VRP usually is to minimize the
number of vehicles first, and secondary the total travel distance. In the case
we consider here, this ‘number of vehicles’ is fixed: each shift of an employee
is open for service tasks, and there is no gain in leaving a shift empty. On the
contrary, spreading the work can be one of the objectives.

We consider the situation in which a company (or ‘service provider’) pro-
vides services to its clients upon request. Such a request leads to a task that
is executed by an engineer of the company at the address of the client at a
specific time. A task can be a small repair (in case the company is a housing
corporation or an installation company), or some other service. We assume in
our datasets that the tasks require between 30 minutes and 60 minutes of ser-
vice time. An engineer has daily shifts, usually starting at the home address
of the engineer, driving to and executing the tasks, and driving to the end
destination, which is either the home or the company address1. This leads to
shifts in which the service time is present in relatively large time blocks. The
tasks might be relatively far apart: the service provider might cover a large
area in which the tasks are relatively sparse. This leads to the question how
to handle incoming requests; at what time window would the request fit the
best? This process is called the ‘call intake’ and is the subject of this paper.

Section 2 describes the routing problem that we have to solve; it is the result
of the decisions made during the call intake process that is describes in Section
3 . Section 4 discusses a small example that can be analyzed completely. In
Section 5, we describe the simulation set-up, and Section 6 gives the simulation
results. The concluding remarks are in Section 7.

2 The routing phase

For the moment we assume that somehow all tasks are defined. In particular,
a task can require a skill, has an (expected) service time, and a time window
that defines the earliest and latest start time. Usually, time windows origi-
nate from the so-called ‘block times’ that the company applies to all service
requests. These block times usually are two to four hours long. Hence the rout-
ing problem essentially consists of daily subproblems. Especially tomorrow is
relevant; we need to finalize tomorrow’s schedules and inform the engineers on
their routes.

1 When the routing aspect of a shift with tasks is being discussed, we often use the word
route.
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Quite similar to the Maintenance Personnel Scheduling Problem (MPSP)
in [8], the tasks assigned to a shift of the engineer must obey the following
constraints:

– Pre-assigned tasks and other appointments should be scheduled as given.
– The field engineer must be skilled for the task.
– A task should start within its time window.
– The expected travel times between the scheduled tasks should be respected.
– The start address and the finish address of a shift can be different; traveling

from the start address to the first task, and traveling from the last task to
the finish address can sometimes partly be done in private time.

– If the shift has a break, the duration of the task or travel is extended with
the duration of the break. In particular, a task or travel cannot start during
the break, but can start before and finish after the break.

– If a task is assigned to a region, the engineer should work in this region.
This region can be a geographical region, but also an administrative region.
An engineer can be assigned to different regions during the week and even
during the day. Multiple regions at the same time are possible.

– A task can have a pre-assigned engineer, which must be respected, or a
preferred engineer. Assigning a preferred engineer takes precedence over
minimizing the travel time.

Since the shifts are fixed, the personnel rostering constraints mentioned in
[8] are not relevant. The main objective is first: to assign as many tasks as
possible, second: take preferences into account, and third: minimize the total
travel time. Minimizing the travel time reduces the direct costs and in addition
might create space for an extra task in a shift. This is not relevant anymore
when we optimize the planning for tomorrow, but for later days it is.

3 The call intake process

In the previous section we discussed the routing problem to be solved. As
explained there, the routing problem usually splits in daily problems, because
of the time windows that are attached to the requests. The assignment of the
time windows is done in the phase we call the ‘call intake process’. This process
for service planning differs quite of lot from home deliveries, as discussed in
[15] and [16]:

– Often home deliveries are for today or tomorrow. In service planning the
time scale usually is in weeks.

– In home deliveries the requests do not require skills, and can be assigned
to all resources.

– In home deliveries the service durations are short, maybe just 2 minutes.
Hence a shift can contain over 100 tasks in an urban region.

– In home deliveries the client orders via internet, while in service planning
the majority is done via a planner or the customer care center.
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Summarizing, we might have more influence on the time window for a request,
and, moreover, it might be important to use this to get a favorable time window
for a request. We can give the company’s planner insight in the differences
in travel times for different time windows. If in a certain week there are no
convenient time windows for both, the client and the service provider, the
planner might switch to the next week, not mentioning (or even not having
available) unfavorable time windows.

In this call intake process, there is a balance between using low travel
times, and filling the shifts of service engineers for the upcoming days. How
eager should we be filling these shifts? If a shift for tomorrow can accommodate
a task, shouldn’t we simply take it, to avoid that a part of the capacity of the
shift is left unused?

Note that the call intake process can be viewed as the construction phase of
a routing problem. Methods that improve this phase can be helpful in the call
intake process. On the other hand, we know that the result of the construction
phase is not directly related to the result after optimization. Hence, we want
to study these differences as well.

4 Explanatory example

4.1 Set-up

We discuss a small 1-dimension example, to explain the way the call intake
process works, and to show the effect of clustering, which we explain in detail
in Section 6.4. The example can be analyzed completely.

The set-up is the following:

– There is one engineer at position 0. All incoming tasks can be executed by
this engineer.

– Every day two tasks appear, with equal chance for the positions -1 or 1.
The deadline is three days (tomorrow and the two days after that).

– The engineer can handle two tasks per day, which are either both at posi-
tion 1 (travel time is 2 units), or both or position -1 (travel time again 2
units) or one at position -1, and 1 at position 1 (travel time 4 units).

– The time windows coincide with the days.
– The planning is two tasks behind. That means the following. Today we

do the planning for tomorrow and the two days after tomorrow. However,
there are already two tasks planned for tomorrow and the day after. Since
postponing tasks has no benefits, we have 5 (reasonable) ‘states’:

State 1, denoted by (1, 1)⊙ (., .). Tomorrow the engineer has two tasks at
position 1, nothing planned yet for the day after.

State 2, denoted by (−1,−1)⊙ (., .). Tomorrow the engineer has two tasks
at position -1, nothing planned yet for the day after.

State 3, denoted by (1,−1)⊙ (., .). Tomorrow the engineer has one task at
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position 1 and one at position -1, nothing planned yet for the day after.

State 4, denoted by (1, .) ⊙ (−1, .). Tomorrow the engineer has a task at
position 1, and the day after at position -1.

State 5, denoted by (−1, .) ⊙ (1, .). Tomorrow the engineer has a task at
position -1, and the day after at position 1.

4.2 Strategy: first possible day

Starting from the 5 states above, we apply the strategy ‘first possible day’.
That means that any task that appears is planned at the first possible day i.e.
the first day with at most one planned task. Note that it not allowed to look
ahead! From a meta point of view, we know that 2 tasks per day will appear
(since that is our set-up), but for the simulation we do not know this. For
example, if we are in State 4, and a task at position -1 appears as first task,
we plan it for tomorrow, even though the next task might be at position 1.
With this strategy we have the following transition matrix between the states;
matrix element (i, j) is the probability that State i moves to State j on the
next day.

0.25 0.25 0.5 0 0
0.25 0.25 0.5 0 0
0.25 0.25 0.5 0 0
0 0.5 0.5 0 0
0.5 0 0.5 0 0

.

We see that in the steady state the States 4 and 5 disappear, because they
do not satisfy the ‘first possible day’ strategy. Moreover, we can calculate that
in the steady state, the States 1 and 2 have a probability 1

4 , and State 3 has
probability 1

2 . From this we obtain the expected daily travel time:

1

4
∗ 2 + 1

4
∗ 2 + 1

2
∗ 4 = 3.

4.3 Strategy: cluster

In the ‘first possible day’ strategy, we do not use the freedom to postpone a
task. Doing this is an example of clustering. Our strategy for the next appear-
ing task at position x is the following:

– If tomorrow has only one task planned, we plan it tomorrow.
– If tomorrow is full, plan it on a day we already visit position x.
– If after tomorrow we don’t visit x yet, plan it on the first empty day.

Again we can calculate the transition matrix, which is now
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0.25 0.25 0 0.25 0.25
0.25 0.25 0 0.25 0.25
0.25 0.25 0 0.25 0.25
0 0.5 0 0 0.5
0.5 0 0 0.5 0

.

In this case, State 3 disappears from the steady state, and the other states
all have probability 1

4 . Analyzing the expected daily travel time for this asymp-
totic situation yields:

1

4
∗ 2 + 1

4
∗ 2 + (

1

8
∗ 2 + 1

8
∗ 4) + (

1

8
∗ 2 + 1

8
∗ 4) = 2.5

Hence clustering yields a saving of 16.7% in travel time, while still planning
all tasks within the deadline.

5 Simulation set-up

The example above is exceptional in the sense that it can be completely an-
alyzed. In practical situations, this is impossible due to the huge number of
tasks, additional constraints, the complicated geometry, and the unknown dis-
tributions underlying the requests.

In the literature we didn’t find any papers describing a similar situation,
apart from applications for retail (see for example [15]) and requests that
have to be handled within a short time frame (for an overview, see [2,11]). A
somewhat related paper is [9], where engineers also have to handle stochastic
requests. However, these request include already the time window. In the call
intake process the essential feature is that we can choose the time window,
based on the previous requests (with a time window) and the expectations of
the upcoming requests.

A general framework for this type of problems, under the title of ‘Online
Stochastic Combinatorial Optimization’, can be found in [7]. Here, it is as-
sumed that during the day requests appear, that have to be processed. In our
case we cannot collect the requests during the day, as the client is online or
on the phone: each request has to be handled immediately. Handling a request
means that we tell the client in which time window, the engineer will arrive to
handle the request. The request with an assigned time window, we will call a
task. The task is the result of a negotiation between the client and the planner.
The planner will offer a favorable time window, favorable in the sense that this
time window seems to fit nicely in the schedules of the engineers. However,
the client might not be available at this time. Consequently, the planner will
offer a different one. In online situations, the client might be able to pick one
of, say, three proposals for the first week. If none of these is suitable, the client
can switch to the next week, and repeat the process.

To study the effect of different strategies we will run simulations using dif-
ferent strategies. To have a realistic situation, we created five datasets for a
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company with 25 engineers. We generated data for 270 (working) days, with an
average of 200 requests per day. The data files are available at

https://github.com/gfpost/CallIntakeProcess. 
The data was created in the following way.
 
5.1 Locations and travel times

All locations are picked randomly from a 100× 100 grid, all points with equal
chance 0.0001. The travel time is calculated by the Euclidean distance at a
speed of 1 grid point per minute. The travel time is rounded to the nearest
second. For example, traveling from (24, 67) to (44, 50) gives a grid distance
of

√
202 + 172 = 43.462..., which gives a travel time of 43 minutes and 28

seconds, or 2608 seconds.

5.2 Engineers

There are 25 engineers, of which the properties were generated randomly. It
resulted in the engineers as described below.

– The shift starts and ends at the home location of the engineer. The home
location is generated randomly from the grid.

– All shifts are 8 hours long, no break is considered. Private travel time is
not allowed, i.e. the work starts at the shift’s start time by traveling to the
first task, and ends by traveling back home, where the arrival should be at
or before the shift’s end time.

– There are five skills, and the employees have one to four skills (randomly
generated). The frequencies of the skills among the engineers are 10, 14,
15, 18, and 21, respectively, an average of 3.12 skills per engineer.

5.3 Requests

The requests have the following properties.

– Each request requires one skill, which is chosen uniformly from the 5 avail-
able skills. Only engineers with this skill can serve the request.

– Each request has a location, which is taken randomly from the grid.
– Each request has a duration (in minutes), the service time needed for the

task. The durations are between 30 minutes and 60 minutes, with an aver-
age of 45 minutes. The distribution is not taken uniformly, but triangular
in the following way. Assume we have N different values. The extremes
(here 30 and 60) have chance m = 1

N2 and the middle value (here 45) has
chance M = 2

N + m. The chance for the other values is found by linear
interpolation. The obtained value is rounded to the nearest 5 minutes, so
that a request has a duration of 30, 35, 40, . . . , or 60 minutes.
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– Each request has an intake day, that is day on which it becomes available.
On this day it must be planned to one of the following days (not on the
intake day itself). As explained above, we consider the online situation, by
which we mean that the request also has a sequence number, and requests
should be assigned following the order by the sequence numbers, without
knowledge of upcoming requests.

– Each request has a preferred deadline which lies between 5 and 10 days,
taken from the triangular distribution as above. The deadline reflects the
situation that a company has internal or external rules (Service Level
Agreements, SLAs) on how many requests should be planned within the
preferred deadline, for example 80% of the requests. If the preferred dead-
line is 7 days and the intake day is 102, then preferably the request should
be scheduled not later than day 109. However, it is allowed to pass the
preferred deadline by 50%, so by 3 days in this case. It is allowed, but not
preferred, to schedule the request on day 110, 111, or 112; such a task we
will call late. If a request is not scheduled, i.e. if it is not turned into a task,
the request is registered as unplanned. From the company’s point of view,
an external resource is required to handle such request.

– Per day we generate between 180 and 220 requests. This number is also
chosen from the triangular distribution described above.

5.4 Time windows

We turn a request to a task by assigning a time window to it. This time
window is determined by the strategy that we are running. In our simulations
we use time windows of 2 hours, aligned with the shifts of 8 hours; each shift
intersects with 4 time windows.

5.5 Validation

The data in an instance (270 working days) represent more or less one year. We
use the first 50 days as warm-up period, the validation uses the next 200 days.
Since we can plan at most 15 days in advance and have 20 days left, there are no
end of period effects in the validation period. The results in validation period
are uniform during the whole period implying that the warm-up period of 50
days is sufficient. In the validation, we consider the requests with the intake
day in the validation period. We are interested in the number of unplanned
requests, the number of the late tasks, and the total travel time.

5.6 Strategies

We investigate the effect of different strategies, and the use of optimization at
the end of the day. For the basic strategies we consider the ones like in Section
4.
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– First possible day. We assign the request to the first possible day. If on
the first possible day there are several possible shifts, we assign it to the
shift and position in which the extra travel time is the lowest. In case of
equality we use the earliest possible time window. The other tasks remain
in the same order. While inserting we have to consider the time window we
try to assign to the request, and respect the time windows of the already
present tasks in the route.

– Min travel time. If there are several options for a request, we assign it
to the shift in which the extra travel time is the lowest, in the same way
as in First possible day. This corresponds to the Greedy algorithm, as
mentioned in [7].

The strategies first consider shifts within the preferred deadline. If in this
period options are found, the ‘best’ one of these is used (though from a higher
level, it might be inefficient). If no option within the preferred deadline is
found, we consider the 50% extension interval. If in this interval there are
options, the strategy will choose the ‘best’ one of these. Here ‘best’ refers to
the opinion of current strategy.

6 Simulation results

In this section we present the results of the simulations we executed. We
start with the basic strategies. Based on the results we try to improve the
simulations by guiding the strategies to other choices.

We present the results for of all five datasets in one table. The results of
the different datasets are very similar, so there is no added value in presenting
five different tables. Per day there are on average 200 tasks, that means that
each dataset has around 40,000 tasks to validate, in total there are 200,316
tasks. We present the results on the following performance indicators:

– Unplanned. The percentage of the requests that could not be planned in
the 50% extended deadline interval.

– Lates. The percentage of late tasks. The percentage is taken relative to
all planned tasks.

– Avg late. The average number of days late, among all late tasks.
– Travel. The average travel time in minutes per task, calculated as follows:

the total travel time on the validation days divided by the total number of
tasks scheduled on the validation days; so it represents the travel time per
executed task.

6.1 Basic strategy

As always, our strategies first try to assign within the preferred deadline, but
if no option is found there, we consider all options in the allowed days late,
and pick the best one. This leads to the table below.
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Strategy Unplanned (%) Lates (%) Avg late Travel

First possible day 15.16 82.21 2.03 23.6
Min travel time 13.05 79.57 2.50 22.7

Results for the basic set-up

Note that the instances are (seem) very tight. The ‘First possible day’ strategy
is worse than the ‘Min travel time’ strategy except for the average lateness.
The travel time is higher, explaining why less requests could be handled by
the ‘First possible day’ strategy.

6.2 In an empty shift ignore the travel time back to home

In construction algorithms it is well known that weighing different travels in
different ways can make a difference [14]. Since we are still in the range of con-
struction, and empty routes will not be present in the end, we expect to see
this effect here as well. We will favor empty routes by giving a 50% reduction:
as extra travel time, we use only the time traveling to the task, and not the
way back. The results are presented in the table below.

Strategy Unplanned (%) Lates (%) Avg late Travel

First possible day 13.69 81.11 2.01 22.5
Min travel time 11.14 77.62 2.65 20.4

Results with travel time reduction for empty shifts

The strategies clearly benefit from this change. Before discussing a clustering
strategy, we do a final check if preferring the first days has some influence on
the results. We will keep the empty shift travel time reduction.

6.3 Give travel time reduction to early days

In less challenging planning problems, it might be a good idea to fill the gaps
in shifts of tomorrow, and maybe one or two days after that. However, in our
cases the shifts will be full anyway. Nevertheless, we do a run with reductions
on the travel times: 10 minutes for tomorrow, 6 minutes for the day after, and
2 minutes for the day after that.

Strategy Unplanned (%) Lates (%) Avg late Travel

First possible day 13.69 81.11 2.01 22.5
Min travel time 11.19 77.68 2.66 20.5

Results with travel time reduction for early days
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As expected the results are almost the same as in Subsection 6.2. For the
‘First possible day’ strategy there is no difference (of course). The results for
the ‘Min travel time’ strategy are slightly worse, what could be expected as
the ‘First possible day’ strategy is worse; the planning is so tight that it is a
waste of capacity to assign earlier at the expense of higher travel time.

6.4 Dynamic clustering

Before turning to results with optimization, we want to discuss ‘dynamic clus-
tering’, which seems to be new in this area. In VRP, clustering is well-known;
an early reference is [1]. In particular in periodic VRP, see [4], clustering tech-
niques are widely used.

Although the problem here is not periodic, it shares that there is freedom
to decide on which day and time window we place a request. The benefits are
comparable: if we have requests to the west and to the east, it would be nice
to create tasks on one day for the west, and on the other day for the east, see
also Section 4. In periodic VRP it might not be (fully) possible, because some
locations in the west and east have to be visited each day. In our situation,
we have the clients that have preferences. We ignored these, assuming that
the client will accept the time window calculated by the strategy. In practice
the client will have choice from some time windows. From the point of view
of the service provider, it would be wise the limit the possibilities, especially
when the service area is large. The company might do this by assigning its
engineers to geographical regions, making sure that tasks for an engineer are
in an acceptable range.

Nevertheless, the travel times can be rather high, especially if the engineer
is a specialist, serving a large area. In this case it is inevitable that the engineer
has to visit a location ‘A’ far from home in one of the shifts, but we would
like that other tasks in this shift are not too far away from location A. This
strategy we call ‘dynamic clustering’: once one or more tasks are assigned to
a shift, the new task should be close (in travel time) to all already assigned
tasks. This maximum travel time between tasks in a cluster, we call the cluster
diameter. To avoid the risk of partly idle shifts, we do not enforce dynamic
clustering for tomorrow and the day after tomorrow. For any time window in
the time range that dynamic clustering is active, we require that a request is
added to a cluster, if possible. Only if no cluster is found for a time window, an
empty shift can be used. In this way we hope to fill the clusters to its capacity.

It depends on the instance what is the best cluster diameter and what
is the best day to abandon it. If the cluster diameter is too small, we can
expect that many requests will remain unplanned. If the diameter is too high,
we can expect less effect from dynamic clustering. After some experiments on
our datasets, it turned out that a diameter of 18 minutes works well. Note
that this is more than 10% lower than the average travel time per task in the
experiments till now.
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We keep on using the travel time reductions of 10, 6, and 2 minutes, for
the first three days; i.e. we use the same parameters as in Subsection 6.3. We
can combine dynamic clustering with the strategies described there, because
dynamic clustering only restricts the availably options. The simulations lead
to the following results.

Strategy Unplanned (%) Lates (%) Avg late Travel

First possible day 0.68 30.32 1.58 13.7
Min travel time 0.16 18.19 1.93 12.6

Results with dynamic clustering

The improvement is spectacular. In the previous experiments, it seemed that
not nearly all tasks could be scheduled. However, when using dynamic clus-
tering and the ‘Min travel time’ strategy, only 323 out of 200,361 tasks were
not planned. The travel time per task drops by 40%; without clustering the
travel time consumed around 30% of the total time in the shifts, but when
using clusters this drops to 21.0%. The conclusion is that if only construction
is applied, dynamic clustering is very effective. It remains to investigate the
effects of optimization.

6.5 Optimization

We will study the effect of optimization, for the situation without or with dy-
namic clustering. In both cases we apply an optimization algorithm per day for
30 seconds. The algorithm we use is an ALS method [12], in the way described
in [5]. For the experiments without clustering, we apply optimization on the
first five days; for the experiments with dynamic clustering we only optimize
the first two days; we leave the clusters as they are. The simulation without
clustering gives the following results.

Strategy Unplanned (%) Lates (%) Avg late Travel

First possible day 0.73 28.87 1.67 14.4
Min travel time 0.61 32.35 2.35 13.7

Results with optimization on 5 days, without dynamic clustering

Compared to Subsection 6.3, we see a large improvement. This is not unex-
pected, as optimization in VRPs usually largely improves the solution. Note,
however, that these solutions are worse or at best comparable to the results
in Section 6.4. That makes us curious about the result with optimization and
dynamic clustering. These are presented in the table below.
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Strategy Unplanned (%) Lates (%) Avg late Travel

First possible day 0.00 5.75 1.19 13.1
Min travel time 0.01 9.80 1.86 11.9

Results with dynamic clustering and optimization on 2 days

The results still improve, but not as much as without using clusters. We could
have expected this, because all tasks in a route are already close together, and
tasks in other routes probably are at some distance. In view on the number
of tasks planned and the preferred deadline, the ‘First possible day’ strategy
works the best; all 200,361 tasks are planned, and only 5.75% of the tasks is
outside the preferred deadline. However, if reducing travel time is important,
the strategy ‘Min travel time’ could be used. In this case only 23 tasks are not
planned, the lateness is higher, but the travel time per task is lower, saving
around 800 hours of travel time per instance.

7 Conclusion

We discussed the problem of the call intake for service planning. We described
several methods on how to choose time windows for the requests. We ran a
simulation on rather complex data. On this data we noted that giving prefer-
ence to empty routes, dynamic clustering and intermediate optimization are
important aspects. In our simulations the results improve considerably.

This simulation is a simplified model of reality. First there is the client:
the best time window for the company might not be feasible for the client,
which might worsen the results. However, some preliminary tests with random
choices among the options available, show that this effect is limited. It will not
change the validity of the discussions in the previous sections.

Another aspect is the homogeneity of the data. First, the geometry is very
simple, as well as the expectations for the task properties. In a real situation
the service area might be split in regions, and the engineers work only in some
of the regions. This restricts the options for the requests, but ensures that if
there is only one available engineer, the engineer will not drive two hours to
the other side of the service area and two hours back.

Another aspect of the geometry is that population densities can vary in the
regions we consider. In such cases it might be beneficial to decrease the cluster
diameter for an engineer working in highly populated regions. It is difficult to
predict what choice is the best, but in practice we can monitor the results,
and adjust the parameters accordingly.

Finally, there is the planner’s acceptance. Especially looking at a single
route, it is important that the route is optimal at all times. Since usually
there are not more than 10 tasks in a shift, we can guarantee optimality within
a shift, for example by solving a dynamic program [6]. We call this method
Optimized Best Fit (OBF). Each (shift/time window)-combination can be
solved in a few milliseconds, making it feasible to combine the strategies with
optimization per shift. OBF did not improve the results in our simulation
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experiments. For the same reason of planner’s acceptance, we always use the
reductions on the first days. In times that the workload is low, for sure it is
preferable to fill the upcoming days. The experiments above show that the
‘First possible day’ strategy is competitive with the ‘Min travel time’ strategy
even when the planning is tight.

The OBFmethod with dynamic clustering supports several service providers
using PCA’s product Marlin, see [10]. It helps them in easily providing good
options to their clients, and reduces the effort of planning as well as the total
travel time, thus improving their productivity.
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15. Arne Strauss, Nalan Gülpınar, Yijun Zheng, Dynamic pricing of flexible time slots
for attended home delivery, European Journal of Operational Research 294, 1022–1041,
(2021).

16. Thomas Visser, Vehicle Routing and Time Slot Management in Online Retailing, EPS-
2019-482-LIS, (2019).

278


	Introduction
	The routing phase
	The call intake process
	Explanatory example
	Simulation set-up
	Simulation results
	Conclusion

