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Abstract. Quantum computing is offering a novel perspective for solving com-
binatorial optimization problems. To explore the possibilities offered by quantum
computers, the problems can be formulated as Quadratic Unconstrained Binary
Optmization (QUBO) models, taking under consideration the limitations of the
current state of Quantum Annealers. QUBO represents a class of optimization
problems that involve binary decision variables and quadratic objective functions.
It has applications in a wide range of fields and can be solved using classical or
quantum optimization techniques, depending on the problem size and complexity.
In this work, we provide a QUBO formulation of the Uncapacitated Examination
Timetabling Problem along with modifications for symmetry reduction in the
context of solving it on a quantum computer. We also introduce a test-bed dataset
of small instances suitable for modern annealers, along with optimal solutions to
serve for comparison. To prove the efficiency of the formulation we test our model
in D-Wave’s hybrid annealer.

Keywords: QUBO, Quantum Annealing, Scheduling, Hybrid Quantum Comput-
ing, UETP.

1 Introduction

Educational timetabling problems involve the task of scheduling courses, classes, exam-
inations, teachers, and resources within an educational institution to optimize various
objectives while satisfying constraints. These problems are common in schools, colleges,
and universities, and they can be quite complex.

Examination timetabling is a critical administrative task in educational institutions
that involves scheduling examinations for students, ensuring that all examinations are
conducted smoothly, and minimizing conflicts or constraints. This process can be com-
plex due to various factors, including room availability, student preferences, and the
need to optimize resource utilization.

The UETP is a specific variant of the examination timetabling problem that focuses
on scheduling a set of examinations within a given time frame and without considering
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room capacities or constraints related to room allocation. In other words, it assumes
that all examinations can be accommodated in any available room, making it a simpli-
fied version of the more complex capacitated examination timetabling problem. UETP
has practical applications in educational institutions where examinations need to be
scheduled within a specific time frame without considering room constraints. It is a
foundational problem in examination timetabling, and solutions to UETP can be further
extended to handle capacitated versions of the problem.

While UETP does not consider room capacities, it still has constraints to satisfy:

– No two examinations for the same student should be scheduled in the same time slot
(to avoid conflicts).

– Each examination can only be scheduled once.

To encourage greater preparation and less stress for the students, their schedules
should also contain sufficient gaps between examinations for all students. Carter et
al. [3] introduced in 1996 the problem along with a dataset made of real-life instances,
and numerous researchers have experimented with this dataset since then.

Quantum annealing is a specialized quantum computing approach used to solve
optimization problems. It is considered one of the quantum computing paradigms,
alongside with other methods like quantum gate-based computing. Quantum annealers
(QAs) are designed to tackle optimization problems by leveraging quantum properties
to potentially find more efficient solutions than classical computers for specific types
of problems. Quantum annealing and QUBO are closely related concepts in the field
of quantum computing and optimization. QUBO is a mathematical formulation used to
express certain optimization problems, and quantum annealing is a quantum computing
approach that can be applied to solve QUBO problems.

An outline of the paper follows. Section 2 contains a glimpse of the broad bibli-
ography regarding the UETP and education timetabling in general along with QUBO
formulations of other scheduling problems. Section 3 provides a brief description of
the problem along with symmetries that have been identified in the past. Section 4
introduces the dataset we created to allow instances of the UETP to fit in modern QAs.
Section 5 contains the QUBO model accompanied with a minimal example. Finally, in
Section 6 we demonstrate the results obtained by testing our dataset using D-Wave’s [1]
cloud-based hybrid solvers.

2 Related Work

The related work about the examination timetabling problem in general and UETP in
particular is very large. We refer the interested readers to the survey papers [9] and [4]
while our recent paper [5] uncovers some of the symmetries that are found in UETP.

Regarding QUBO a nice introduction to the subject can be found at [6]. More
specifically, QUBO models have been tried for several scheduling and timetabling prob-
lems [11]. For example the nurse scheduling problem has been addressed using QUBO in
[7]. Other examples can be found in [8], [12]. Another resource that is worth mentioning
is [10] which presents a list of QUBO formulations for several optimization problems.
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Quantum computing is a fascinating relatively new computing paradigm that holds
the promise of surpassing the limits of computation that currently exist. It is based on
a new non Von Neumann architecture and several technology companies invest large
amounts of money and resources in an effort to realize such systems. D-Wave is a
leading company for quantum computing and in this paper we use the so-called hybrid
solver of D-Wave for our experiments. An evaluation of quantum and hybrid solvers for
combinatorial problems can be found at [2] published on arXiv.

3 Problem Description

UETP instances contain students, the examinations they participate and the total number
of available periods % for the entire timetable. Uncapacitated, as indicated, denotes the
absence of room restrictions. Additionally, none of the other restrictions that are typical
found in actual examination scheduling exist. These limitations include the availability
of the examiners, the order of the examinations, the grouping of the times on weekdays,
and others. Consequently, UETP can be seen as an abstraction of the actual examination
scheduling problem.

An instance can be thought as an undirected weighted graph G = (V,E), where
vertices V represent examinations and edges E represent common students between
examinations. The number of students who take both of the examinations at the edge’s
ends makes up the edge’s weight ,E1 ,E2 . The only strict requirements are that a) each
examination should only be scheduled once, and b) no student should be permitted to
take more than one examination per period. The quality of a timetable is measured by
an objective function. Each student applies a penalty of 16, 8, 4, 2, 1 for intervals of 1,
2, 3, 4 or 5 periods between each of his examinations respectively. Notation used in this
paper is shown in Table 1.

Table 1: Notation used for describing UETP.
Sets
V Set of examinations.
E Set of pairs of examinations with students in common.
P Set of periods.
Constants

�?8 ,? 9

25� | ?8�? 9 |
, if 0 < |?8 � ? 9 |  5

0, otherwise.
,E1 ,E2 Total number of common students between examinations E1 and E2.

GE,? =
⇢
1, if examination E is placed in period ?.
0, otherwise. 8E 2 V 8? 2 P (1)

min
’

(E1 ,E2 )2E

’
?12P

’
?22P

�?1 ,?2,E1 ,E2GE1 ,?1GE2 ,?2 (2)
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s.t. GE1 ,? + ?E2 ,? <= 1 8(E1, E2) 2 E 8? 2 1..% (3)

%’
?=1

GE,? = 1 8E 2 V (4)

The penalty factor for the intervals of periods is calculated as in Table 1. Binary
decision variables in Equation 1 denote the period that each examination is placed to.
The objective function in equation 2 simply totals the penalties for all examinations.
Finally, constraint 3 ensures than no two examinations sharing students are in the same
period and constraint 4 obligates each examination to be placed once and only once.

3.1 Bidirectional Timetable Symmetry

It is easy to observe that if period ? 2 1..%, changes to %�?+1 for all examinations, then
we effectively get the original solution reversed. Since the cost is computed based on the
distance among periods of scheduled examinations, the objective function is unaffected
as demonstrated in equation 5.

’
(E1 ,E2 )2E

’
?12P

’
?22P

�?1 ,?2,E1 ,E2GE1 ,?1GE2 ,?2 =

’
(E1 ,E2 )2E

’
?12P

’
?22P

�?1 ,?2,E1 ,E2GE1 , (%�?1+1)GE2 , (%�?2+1) (5)

4 Dataset

Different datasets regarding the UETP problem were made public over the years, but
the sheer size of the included instances make them to big to fit in current state of the art
annealers. While the number of qubits required for some small instances is acceptable,
the nature of the problem i.e., the relation of two exams with students in common, results
in an increase of the Non Zero Couplings in the matrix that is sent to the solver (usually
called a QMatrix) provided to the solver, thus making most of these instances unfit for
the annealer.

In order to demonstrate the proof of concept we opted to generate a dataset consisting
of 50 small instances able to run on current annealers. To create an instance we randomly
choose between 3 and 7 exams and generate a complete graph with them (all of them have
students in common) the number of the periods available equals the number of nodes in
the complete graph to make the instance compact e.g., there exists no solution with an
empty period, then we proceed to add more exams and more conflicts while keeping the
number of conflicts under 60. The students in common between the conflicting exams
(the weight of their edge) is chosen arbitrarily between 1 and 100. However, this number
could be higher as this will not result in more variables.

To test the annealer against the optimal solutions we employ GoogleOR-Tools CP-
SAT Solver to solve the problem instances to optimality. The characteristics and optimal
solutions values are presented in Table 2.
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Table 2: Instances and characteristics
Instance 1 2 3 4 5 6 7 8 9 10
Examinations 20 19 8 13 22 19 20 17 18 20
Periods 6 6 5 5 4 6 7 5 7 6
Conflict density 0.23 0.28 0.37 0.55 0.19 0.25 0.24 0.3 0.27 0.27
Optimal 10512 10736 13540 17376 16152 9916 7458 13242 8365 12720
Instance 11 12 13 14 15 16 17 18 19 20
Examinations 24 24 20 18 19 15 23 17 27 8
Periods 4 4 6 5 4 5 5 5 7 6
Conflict density 0.15 0.15 0.23 0.29 0.25 0.38 0.17 0.33 0.12 0.38
Optimal 16312 13460 10018 13088 16700 12724 9640 11704 8281 12255
Instance 21 22 23 24 25 26 27 28 29 30
Examinations 19 19 26 17 20 19 27 23 19 17
Periods 4 5 7 7 6 7 7 7 6 4
Conflict density 0.25 0.27 0.14 0.29 0.24 0.24 0.13 0.17 0.24 0.32
Optimal 15592 15628 5316 7464 10445 8301 5718 9265 7700 19680
Instance 31 32 33 34 35 36 37 38 39 40
Examinations 21 25 17 15 22 26 20 17 18 19
Periods 6 6 7 4 4 7 6 5 5 7
Conflict density 0.21 0.16 0.33 0.39 0.19 0.14 0.24 0.31 0.29 0.25
Optimal 8749 8834 8780 20364 17412 6735 11691 12356 14434 7221
Instance 41 42 43 44 45 46 47 48 49 50
Examinations 24 15 17 21 23 8 18 24 19 18
Periods 7 5 5 4 6 6 5 6 6 6
Conflict density 0.16 0.44 0.33 0.23 0.17 0.38 0.27 0.18 0.25 0.3
Optimal 5885 15108 18630 24604 8456 9731 7964 8723 9407 9654
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5 Unconstrained Binary Model

The general form of a QUBO objective function can be expressed as follows:

min
=’
8=1

@88G8 +
=�1’
8=1

=’
9=8+1

@8 9G8G 9

where:

– G8 are binary variables.
– = is the number of binary variables.
– @88 represents the linear coefficient associated with variable G8 .
– @8 9 represents the quadratic coefficient associated with the interaction between

variables G8 and G 9 .

The model for a QUBO problem will always be the same. What makes the difference
is the choice of the values in the QMatrix. For this problem our binary decision variables
assume the value 1 when a specific exam is scheduled in a period. For exams in conflict
the corresponding quadratic coefficient is calculated as �?1 ,?2,E1 ,E2/2. We divide by
two because the QMatrix is symmetric. As the nature of QUBO formulation is inherently
unconstrained we choose a large enough number " to impose penalties and incentives
in the objective function that can act as constraints. We chose " to equal the sum of
all edges multiplied by 16 to ensure that no worse solution exists when you violate
the conflicting exams constraint 3. To provide the incentive to schedule all exams, as
dictated by constraint 4, we set the value of an exam being placed to �" and to " if
the exam is placed twice.

We use a minimal problem presented in Figure 1 to demonstrate the resulting
QMatrix in Table 3. Note that this toy example involves 5 examinations and 3 periods.

1

2

100

3

150
450200 52

Fig. 1: Minimal problem graph (5 examinations, 3 periods).

We can also choose to eliminate the bidirectional timetable symmetry discussed in
Section 3.1 by restricting any two conflicting exams to be placed in a certain order. If
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Table 3: Q Matrix
⇢1%1 ⇢1%2 ⇢1%3 ⇢2%1 ⇢2%2 ⇢2%3 ⇢3%1 ⇢3%2 ⇢3%3 ⇢4%1 ⇢4%2 ⇢4%3 ⇢5%1 ⇢5%2 ⇢5%3

⇢1%1 -M M M M 800 400 M 1200 1200 M 400 200 0 0 0
⇢1%2 M -M M 800 M 800 1200 M 1200 400 M 400 0 0 0
⇢1%3 M M -M 400 800 M 1200 1200 M 200 400 M 0 0 0
⇢2%1 M 800 400 -M M M M 1600 800 0 0 0 0 0 0
⇢2%2 800 M 800 M -M M 1600 M 1600 0 0 0 0 0 0
⇢2%3 400 800 M M M -M 800 1600 M 0 0 0 0 0 0
⇢3%1 M 1200 1200 M 1600 800 -M M M 0 0 0 0 0 0
⇢3%2 1200 M 1200 1600 M 1600 M -M M 0 0 0 0 0 0
⇢3%3 1200 1200 M 800 1600 M M M -M 0 0 0 0 0 0
⇢4%1 M 400 200 0 0 0 0 0 0 -M M M M 16 8
⇢4%2 400 M 400 0 0 0 0 0 0 M -M M 16 M 16
⇢4%3 200 400 M 0 0 0 0 0 0 M M -M 8 16 M
⇢5%1 0 0 0 0 0 0 0 0 0 M 16 8 -M M M
⇢5%2 0 0 0 0 0 0 0 0 0 16 M 16 M -M M
⇢5%3 0 0 0 0 0 0 0 0 0 8 16 M M M -M

we choose that exam 1 must be scheduled before exam 3 the binary value ⇢1%1 is not
needed anymore as exam 1 cannot be placed in the first period and for each combination
where exam 1 is scheduled before exam 3 we again provide the value of " to place a
heavy penalty if such a combination is selected. The QMatrix with these modifications
is presented in Table 4.

Table 4: Q Matrix without bidirectional timetable symmetry
⇢1%2 ⇢1%3 ⇢2%1 ⇢2%2 ⇢2%3 ⇢3%1 ⇢3%2 ⇢3%3 ⇢4%1 ⇢4%2 ⇢4%3 ⇢5%1 ⇢5%2 ⇢5%3

⇢1%2 -M M 800 M 800 1200 M M 400 M 400 0 0 0
⇢1%3 M -M 400 800 M 1200 1200 M 200 400 M 0 0 0
⇢2%1 800 400 -M M M M 1600 800 0 0 0 0 0 0
⇢2%2 M 800 M -M M 1600 M 1600 0 0 0 0 0 0
⇢2%3 800 M M M -M 800 1600 M 0 0 0 0 0 0
⇢3%1 1200 1200 M 1600 800 -M M M 0 0 0 0 0 0
⇢3%2 M 1200 1600 M 1600 M -M M 0 0 0 0 0 0
⇢3%3 M M 800 1600 M M M -M 0 0 0 0 0 0
⇢4%1 400 200 0 0 0 0 0 0 -M M M M 16 8
⇢4%2 M 400 0 0 0 0 0 0 M -M M 16 M 16
⇢4%3 400 M 0 0 0 0 0 0 M M -M 8 16 M
⇢5%1 0 0 0 0 0 0 0 0 M 16 8 -M M M
⇢5%2 0 0 0 0 0 0 0 0 16 M 16 M -M M
⇢5%3 0 0 0 0 0 0 0 0 8 16 M M M -M

6 Experiments and results

Our experiments were performed using the hybrid Quantum Annealer provided by D-
Wave. A time limit of 20 seconds was given for each problem instance and the results
are presented in Table 5. The justification for using only 20 seconds of running time per
instance is due to the small sizes of the problems and the limited time that the hybrid
solver of D-Wave can use the Quantum infrastructure for the non-pay version of D-Wave
Leap.
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Results show that there is potential for using Quantum Annealers for solving UETP
problems. Some results are optimal, while others are near optimal, as can be seen in
Figure 2 which shows how far from the optimal solution the results for the 50 problem
instances are.

Table 5: Results
Instance 1 2 3 4 5 6 7 8 9 10
Decision Variables 119 113 79 64 87 113 139 84 125 119
Non Zero Couplings 1950 2061 1290 1215 908 1851 2596 1230 2370 2226
Objective 12082 12687 13540 17376 16784 11265 9515 13302 9176 14899
Difference 3.47% 3.26% 11.38% 0.00% 6.62% 0.60% 6.58% 4.12% 3.56% 4.16%
Instance 11 12 13 14 15 16 17 18 19 20
Decision Variables 95 95 119 89 75 74 114 84 188 95
Non Zero Couplings 864 864 1950 1310 842 1165 1405 1330 2669 1926
Objective 17504 15336 11244 13996 16700 13312 11346 12630 11224 12255
Difference 0.00% 0.00% 0.96% 3.18% 6.06% 0.11% 2.31% 3.94% 1.76% 2.88%
Instance 21 22 23 24 25 26 27 28 29 30
Decision Variables 75 94 181 118 119 132 188 160 113 67
Non Zero Couplings 826 1375 2729 2277 2004 2392 2904 2645 1821 814
Objective 15592 16662 8448 8584 12264 9922 9499 11914 9091 19680
Difference 1.68% 0.00% 1.13% 4.06% 1.90% 7.54% 0.00% 0.00% 1.60% 3.49%
Instance 31 32 33 34 35 36 37 38 39 40
Decision Variables 125 149 118 59 87 181 119 84 89 132
Non Zero Couplings 1971 2229 2524 770 880 2788 2016 1250 1325 2439
Objective 10426 11357 10342 20364 17968 10187 12908 12564 14794 8798
Difference 4.01% 4.45% 12.42% 6.25% 4.14% 0.00% 4.37% 6.25% 4.08% 0.79%
Instance 41 42 43 44 45 46 47 48 49 50
Decision Variables 167 74 84 83 137 95 89 143 113 107
Non Zero Couplings 2638 1320 1335 946 1977 1890 1250 2214 1857 1974
Objective 8789 15108 18790 24604 11036 10404 8156 11369 11097 11133
Difference 10.20% 2.47% 0.42% 0.62% 4.92% 9.90% 0.00% 0.21% 0.00% 1.67%

7 Conclusions

In this paper we tried to present a proof of concept idea about using a QUBO formulation
and a Quantum Annealer solver for solving UETP. We created a custom dataset of small
problem instances keeping in mind the current limitations of the Quantum Annealers
and modeled the problem according to QUBO. We then run experiments on the non-pay
version of D-Wave’s Leap architecture. Our results are promising, although they do not
manage to find optimal solutions for all problem instances given only 20 seconds for
each problem, they achieve near optimal results for most of the cases.
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Fig. 2: Difference in percentage from the optimal solution for 50 problem instances.
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