
iMOPSE library for benchmarking Multi-Skill
Resource-Constrained Project Scheduling Problem

Konrad Gmyrek1 [0009�0000�7206�3674] , Michał Antkiewicz1 [0000�0002�6249�4507] , Paweł
Borys Myszkowski1 [0000�0003�2861�7240] , and Jose Luis

Calvo-Rolle2 [0000�0002�2333�8405]

1 Wrocław University of Science and Technology, Faculty of Information and Communication
Technology, Wrocław, Poland

{konrad.gmyrek,michal.antkiewicz,pawel.myszkowski}@pwr.edu.pl
2 University of A Coruña - Department of Industrial Engineering, Coruña, Spain

jlcalvo@udc.es

Abstract. This paper presents an open-source iMOPSE (Intelligent Multi-Objective
Problem Solving Environment) library for (meta)heuristic optimization for bench-
marking Multi-Skill Resource-Constrained Project Scheduling Problem consid-
ered as single-, multi-, and many-objective optimization problems. The library is
implemented in C++ and is designed to support researchers, students, and practi-
tioners. The library includes several sets of benchmark instances, implementation
of NP-hard problems, and (meta)heuristics, like Genetic Algorithm, Tabu Search,
and state-of-the-art multi-objective NSGA-II, SPEA2, or MOEA/D. Additionally,
supporting software tools are included, which are helpful in solution validation,
visualization, and research automatization. All data and provided code is freely
published as open source repository on GitHub.

Keywords: benchmark, scheduling, Multi-Skill Resource-Constrained Project
Scheduling Problem.

1 Introduction

The Multi-Skill Resource-Constrained Project Scheduling (MS-RCPSP) is a combina-
torial NP-hard scheduling problem related to real-world problems, e.g., the Software
Project Scheduling Problem in software development used in Volvo IT company. The
tasks that need to be executed are connected in a precedence graph, so the MS-RCPSP
problem is overconstrained. Moreover, in MS-RCPSP, the RCPSP problem is extended
by resource (human) skills at various levels, introducing additional domain constraints,
making the problem more difficult to solve but flexible in management. The MS-RCPSP
problem benchmark was originally defined [1][2] and could be considered a single-
and many-objective optimization problem. MS-RCPSP problem is commonly used and
cited (e.g., surveys [13][14][20]) – according to GoogleScholar nearly 80 scientific pa-
pers (years 2015-2024) reference or use MS-RCPSP iMOPSE dataset. Additionally, 13
papers that define the MS-RCPSP problem (and solving methods) are cited 605 times.

Initially, the MS-RCPSP problem was defined as a single-objective optimization
problem and presented in [4], where a hybrid of Ant Colony Optimisation (HantCo)

Proceedings of the 14th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2024

iMOPSE library for benchmark MS-RCPSP 111

and the greedy algorithm was proposed. The greedy Randomized Adaptive Search
Procedure (GRASP) method gained a solution about 15.8% more efficient than HantCo
[6]. The above methods solve MS-RCPSP as a single objective using project duration
time Makespan as the only objective function. Additionally, some of the papers explore
the effect of autonomous team role selection in flexible projects and investigate synergies
between employees using the iMOPSE dataset [19]. Hybridized Differential Evolution
and Greedy (DEGR)[7] can also be used to solve MS-RCPSP, and like all the above
methods, is based on a greedy algorithm (Schedule Generator Scheme) to get feasible
solutions. Additionally, the extra research presented in [8] presents the influence of how
coevolution and solution representation could be effective in solving MS-RCPSP.

The MS-RCPSP can also be solved considering two objectives: project total Cost and
duration (Makespan). In this context, bi-objective optimization in MS-RCPSP should
be applied – in [9] results of Non-dominated Sorting Genetic Algorithm (NSGA-II) are
presented. However, classical NSGA-II has some limitations, and the new NTGA (Non-
dominated Tournament Genetic Algorithm)[10] method has been proposed – NTGA
focuses on the diversity of the population, what makes it more effective in solving bi-
objective MS-RCPSP. Next, the NTGA2 [11] method has been proposed, which extends
the NTGA by GAP selection method and extra mechanism to manage the archive
actively. It makes NTGA2 a robust and effective method of multi- and many-objective
optimization in solving MS-RCPSP.

To compare the results of NTGA2, NTGA, and classical NSGA-II with other meth-
ods, a survey of quality that could be applied directly to MS-RCPSP has been published
[12]. A set of complementary measures has been proposed – dedicated and verified in
application to MS-RCPSP. In work [11] NTGA2 is investigated in solving MS-RCPSP
with 5 objectives and compared to state-of-the-art many-objective methods (e.g. U-
NSGA-III or Theta-DEA). Recently, the new balanced B-NTGA [18] method has been
published – it actively balances the exploitation/exploration in the solution landscape –
it dominates the results of other state-of-the-art methods in multi- and many-objective
MS-RCPSP.

There are several methods presented in the literature that use iMOPSE MS-RCPSP
dataset [2] as a benchmark – they could divided by optimization types: single objective
(1 objective), bi–objective (or multi-), and many–objectives (5 objectives). Methods are
based on various metaheuristics, like Differential Evolution [7], Ant Colony Optimisa-
tion [4], Fruit Fly Optimisation [15] or Teaching-Learning Optimisation [16]. Moreover,
hyperheuristics like Genetic Programming Hyper-heuristic [17] are used. Several meth-
ods solve MS-RCPSP as a bi-objective problem (e.g., fruit fly MOFOA [21], genetic
program. hyper-heuristic MOGP-HH-D [22], NTGA). However, to our best knowledge,
only two methods solve MS-RCPSP with 5 objectives: NTGA2 [11] and B-NTGA [18].

The main contribution of this paper is (1) to summarise and extend the MS-RCPSP
research: all benchmark data [1][2][3] to define a standard set of instances, (2) to
provide iMOPSE open-source and publish code for state-of-the-art solving MS-RCPSP
methods to make method comparison more accessible, and to develop a (3) software
tools specialized for MS-RCPSP, like validators or visualizers.

The rest of the article is structured as follows. The definition of MS–RCPSP problem
is given in section 2. The MS-RCPSP instances for the investigations are presented in

Proceedings of the 14th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2024

112 K.Gmyrek et al.

section 3. Section 4 contains the description of iMOPSE and concludes with a case
study showcasing an example of an experiment workflow. The last section (5) concludes
the work and highlights potential directions for further research.

2 Multi-Skill Resource-Constrained Project Scheduling Problem

The MS-RCPSP is a combinatorial NP-hard problem within the domain of scheduling
problems based on model used in Volvo IT company. The discussed problem comprises
two interconnected sub-problems: task sequencing, which involves placing tasks on a
timeline, and resource assignments. MS-RCPSP is defined by a list of tasks and resources
where each task requires a resource with a specified skill level to be executed. The goal
is to find a optimal and a feasible schedule %(, meaning a solution that satisfies all
constraints.

Each resource is linked to a corresponding salary, adhering to the constraint defined
in Eq. 1, ensuring that for each resource A , no salary (AB0;0A H) value can assume a
negative value. Additionally, it dictates that each resource must be associated with a
non-empty set of skills, as resources and tasks are linked to specific skill sets.

8A2'AB0;0A H � 0,8A2'(A < ; (1)

where (A is the set of skills possessed by resource A 2 '.
The duration and finish time of each task cannot be negative (see in Eq. 2.)

8C2)�C � 0;8C2)3C � 0 (2)

where �C denotes the finish time, and 3C represents the duration of task C.
Eq. 3 introduces constraints related to task precedence, stating that a task can only start
after all its predecessors are completed.

8C2) ,?2C?�? �C � 3C (3)

where C? denotes the predecessors of task C.
Eq. 4 addresses the skill requirements in MS-RCPSP, ensuring a resource allocated to a
task possesses the requisite skill at an appropriate level.

8C2)A 9BA 2(A ⌘BC = ⌘BA ^ ;BC ;BA (4)

where)A is a set of tasks assigned to a resource A , BC is the skill required by the task
C, (A is the set of skills possessed by the resource A , ⌘ and ; are the type and level of the
skill respectively.
A constraint ensuring at most one resource is assigned to any task at any given time is
presented in Eq. 5.

8A2'8C2g
=’
8=1
*
C

8,A
 1 (5)

where g is the time domain, = represents the total number of tasks, and *C
8,A

is a
binary variable, equal to 1 if resource A is assigned to task 8 at time C.

Proceedings of the 14th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2024

iMOPSE library for benchmark MS-RCPSP 113

The final constraint (see Eq. 6) ensures that all tasks must be finished by ensuring that
all tasks have a resource assigned at some time slot.

882)9C2g,A2'*C8,A = 1 (6)

where g and*C
8,A

are defined as in Eq. 5.

2.1 objectives in MS-RCPSP

The MS-RCPSP can be defined as single- multi- and ultimately as a many-objective
optimization framework, accommodating up to five objectives [3].

The optimal schedule is the one with the minimal objective function – for multi-
objective optimization, an approximation of Pareto Front is investigated. The feasible
schedule satisfies all constraints related to tasks, resources, skills, and precedence rela-
tions. Formally, the MS–RCPSP optimization problem can be defined as follows:

5 : ⌦! R,<8=(5) (7)

where⌦ is the feasible schedule space, while the 5 is the given objective function(s).
In many-objective MS–RCPSP there are five defined objectives as follows:

– the project schedule duration (makespan) – 5g (see Eq. 8),
– schedule’s cost – 5⇠ (see Eq.9),
– skill overuse – 5((see Eq.10),
– and average use of resources – 5' (see Eq.11).
– average cash flow – (5�) (see Eq.12),

The two most commonly described objectives in literature consist of schedule Makespan
(or Duration) and total Cost. Additional MS-RCPSP objective aims to describe a specific
schedule aspect: Average Cash Flow, Skill Overuse, and the Average Use of Resources.
The MS-RSPSP optimization objectives are defined below.

The Makespan fg (PS) of the project schedule %(is given as Eq.8.

5g (%() = max
C2)

C 5 8=8B⌘ (8)

where) is a set of all tasks, C 5 8=8B⌘ is the finish time of the task C. The Cost of the
schedule is fC (PS) defined as Eq.9.

5⇠ (%() =
=’
8=1

'
B0;0A H

8
⇤)3DA0C8>=

8
(9)

where = is the number of all task-resource assignments, 'B0;0A H
8

is the salary of
a resource of the 8-th assignment,)3DA0C8>=

8
is the duration of the task of the 8-th

assignment.
Skill Overuse aims to minimize the difference between the skill level of a resource

and the required skill. Skill Overuse fS (PS) – see Eq.10) – ensure that the resources

Proceedings of the 14th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2024

114 K.Gmyrek et al.

assigned to the task are not overqualified, which could be essential in the practical
applications.

5((%() =
=’
8=1

'
;

B
�) ;

B
(10)

where = is the number of task-resource assignments, ';
B

is the skill level of a resource
', and) ;

B
is the skill level required for the task) .

Some resources are assigned to the project - and must receive a salary, even if they
are not assigned to any task. The Average Use of Resources (see Eq. 11) objective gives
the distribution of tasks and ensures the efficient use of resources. It aims to minimize
the deviation of the number of task-resource assignments.

5' (%() =
1
A

A’
8=1

('=
8
� '=

0E6
) (11)

where A is the number of resources, '=
8

is the number of tasks assigned to the 8-th
resource, '=

0E6
is the expected average number of assignments.

The Average Cash Flow fF (PS) (see Eq. 12) measures the deviation of costs over
the entire duration of the project and allows for more effective budget management.

5� (%() =
1

5g (%()

5g’
C=1

(⇠C � ⇠0E6) (12)

where ⇠C is the cost of the project in a single time slot C, 5g (%() is the makespan of the
project, ⇠0E6 is the average cost of the project in a time unit and can be defined by the
Eq.13.

⇠0E6 =
⇠

5g

(13)

where ⇠ and 5g are the total 2>BC and <0:4B?0= of the project respectively.

Although the MS-RCPSP, in its nature is multi-objective, but could also be consid-
ered in a simplified version as single-objective MS-RCPSP[7], where the evaluation
function is formulated as follows:

min 5 (%() = Fg 5g (%() + (1 � Fg) 52 (%() (14)

where: Fg – weight of duration component, where 5g (%() and 5⇠ (%() is normalised
and Fg 2 [0; 1].

The above five objectives (5g , 5⇠ , 5(, 5', 5�) are already implemented in iMOPSE
library for MS-RCPSP, but there are no limits and this set could be redefined as iMOPSE
is opensource.

3 MS-RCPSP instances

The provided dataset emerged during a research cycle and was gradually expanded
to accommodate the needs. It consists of 265 unique test instances prepared using

Proceedings of the 14th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2024

iMOPSE library for benchmark MS-RCPSP 115

the iMOPSE generator with different parameters to show the influence of constraints
(e.g., introducing extremely low and high values for precedence relations or no skill
requirements), as well as the task and resource quantity.

All instances are defined using the coherent format and follow the naming conven-
tion, encoded as <task count>_<resource count>_<precedence relation count>_<skill
count>_<postfix>. For example, 200_10_84_9 consists of 200 tasks with 84 precedence
relations and 10 resources with up to 9 unique skills. The <postfix> at the end is optional
and can be used for marking specific variations of the instance. With that said, instance
names should not be decoded to access the exact values, as those are nominal values, and
slight deviations can be found in the data. Therefore, the exact quantities are included
inside the instance definition.

All instances are located within iMOPSE directory configurations/problems/MSR-
CPSP/all and have been divided into the following groups:

– Small (6) - small toy-size instances with 10-15 tasks and 3-9 resources; good for
validation and visualization as optimal solutions are easy to find

– Regular (36) - regular instances with 100/200 tasks, and 5-40 resources, with
varying numbers of skills and relatively small numbers of constraints; instances
with postfix ’D’ come from the real-world scenarios and might be considered more
difficult due to bottlenecks and project milestones; the other instances are generated
to imitate the same characteristics

– RegularGenerated (128) - regular randomly generated instances with 100/200
tasks, 5-40 resources, 5/10 skills, and varying numbers of constraints; generated to
increase the standard instances set providing more combinations to investigate the
impact of task, resource, skill, and precedence relation number

– Dense (7) - randomly generated instances with 100 tasks, 10-40 resources, 9/15
skills, and a high density of precedence relations

– NoConstr (8) - randomly generated instances with 100/200/500/1000 tasks, 20/40
resources, and no constraints (every resource-task connection is valid; no precedence
relations)

– Big (80) - randomly generated instances with 500/1000 tasks, 10 - 40 resources,
5/10 skills, and varying numbers of constraints

4 iMOPSE library – a general idea

iMOPSE is an advanced, open-source C++ toolkit designed for solving NP-hard prob-
lems through a suite of optimization algorithms. Tailored for academic research and
practical applications, iMOPSE streamlines the process of addressing complex opti-
mization tasks. The library’s modular architecture allows easy extensibility in method
and problem implementation (Fig. 1). This section provides an in-depth exploration
of iMOPSE capabilities that support research related to the MS-RCPSP problem and
methods for solving it.

The iMOPSE library includes several evolutionary-based state-of-the-art multi-
objective methods, such as NSGA-II [23], Multi-objective Evolutionary Algorithm
Based on Decomposition (MOEA/D) [24], Strength Pareto Evolutionary Algorithm

Proceedings of the 14th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2024

116 K.Gmyrek et al.

Fig. 1: iMOPSE library – a general schema

(SPEA2) [25], NTGA2 [11] and experimental balanced B-NTGA [18]. Additionally,
iMOPSE offers a set of algorithms for single-objective optimization, including Ge-
netic Algorithms (GA), Differential Evolution (DE), Ant Colony Optimization (ACO),
Tabu Search (TS), Simulated Annealing (SA), and Particle Swarm Optimization (PSO),
therefore providing a set of ready-to-use methods that can be easily extended.

Proceedings of the 14th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2024

iMOPSE library for benchmark MS-RCPSP 117

The above methods are known as effective in solving multi-objective NP-hard prob-
lems with constraints, such as MS-RCPSP [3] and Traveling Thief Problem (TTP).
Beyond MS-RCPSP, iMOPSE is capable of handling various classical NP-hard prob-
lems, such as the Traveling Salesman Problem (TSP), TTP, and Capacitated Vehicle
Routing Problem (cVRP).

Each metaheuristic to search solution space needs a solution representation and
defined genetic operators (or neighborhoods). The following two sections describe that.

4.1 representation for MS-RCPSP

For metaheuristics, to enable an effective search in the solution space, a representation
(solution) should be specialized to a given problem. The iMOPSE library supports three
types of representation (permutation, binary, and real-coded), which enable coding NP-
hard problems as combinatorial (for example TSP) or priority-based in MS-RCPSP
resource assignment (see Fig. 2).

Fig. 2: An example of two types of representation for MS-RCPSP

In the iMOPSE framework, two distinct genotype encodings for the MS-RCPSP
are implemented. The first encoding utilizes a vector of task-to-resource associations,
wherein each vector element represents a unique resource identifier, and the element’s
index corresponds to the task identifier. The second encoding adopts a permutation-
based approach, wherein the vector describes the sequence of tasks, with each element
denoting a task identifier. A dedicated schedule builder uses both encoding methods to
construct valid solutions from the genotypes. For the association-based approach, the
schedule builder assigns resources by iterating through the genotype vector, assigning
the 8-th task to the resource indicated by the 8-th value in the genotype vector. On the
other hand, the permutation-based approach iterates through the sequence of tasks de-
scribed by the genotype and assigns each task to the resource that will be available in
the shortest time. In both scenarios, the greedy schedule builder takes precedence re-
lations into account and automatically adjusts the schedule to ensure validity (see Fig. 2).

Not all solutions can be regarded as feasible schedules, as certain constraints might

Proceedings of the 14th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2024

118 K.Gmyrek et al.

remain unsatisfied. Each investigated method presented in the following sections, capa-
ble of acquiring feasible schedule uses a greedy–based algorithm as Schedule Builder
(i.e.[7][11]) to construct a feasible solution.

4.2 Genetic operators and neighborhoods

Each metaheuristic utilizes operators to explore the solution landscape effectively. In
iMOPSE, there are several implemented operators: neighborhood operators (for TS
or SA), mutations (like RandomBit, ReverseFlip, GaussMutation), or crossovers (e.g.,
Ordering Crossover OX, Cycle Crossover CX). Each operator is designed to work with
specific encoding types; therefore, users must ensure they are using the correct operator
for their chosen encoding method.

To direct metaheuristic in a global search, especially for evolutionary computation,
selection operators also are needed – random (semi-blind, without selection pressure, as
reference), classic tournament or gapSelection [11] for multi-objective optimization. It is
worth mentioning that a predefined set of representations, operators, and selections can
be easily extended as the iMOPSE library C++ interfaces are given for implementation.

Although the operator architecture in the proposed system already includes specific
operations common across various methods, it’s entirely feasible to write the entire code
for a method within a single class. Nevertheless, we recommend enhancing and building
upon the existing operator’s architecture or extending it when developing new methods.
This approach facilitates more robust and flexible method implementation.

4.3 An additional tools (utils)

The iMOPSE library is equipped with utils that support computation and provide re-
searchers with ready-to-use tools for automation, analysis, and visualization. In this
subsection, we describe the most relevant utils tools present in the discussed library (see
Fig. 1).

iMOPSE main framework utilizes ExperimentUtils and ExperimentLogger to sup-
port the process of collecting and saving data from experiments, enhancing data manage-
ment. Additionally, ArchiveUtils aids in archive operations for multi-objective methods.
For sorting and decomposing optimization problems, Non-dominated sorting is utilized
by NSGAII and NTGA2.

External utils – Python scripts The C++ programming language is known as very
effective in computation; however, for data analysis and visualization, more useful is
Pyton. That’s why, in the iMOPSE library, several external tools have been added. Our
collection of Python scripts is crafted to augment scientific research, each designed
for a specific use case and supplemented with descriptive comments for ease of use.
automated_experiments.py automates the concurrent execution of iMOPSE, offering a
robust solution for efficient experimenting. This solution allows researchers to focus
more on analysis and less on the operational aspects of their experiments. Furthering
our support for scientific analysis of methods, msrcpsp_solution_visualizer.py validates
the given MS-RCPSP solution against constraints and visualizes it, highlighting broken

Proceedings of the 14th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2024

iMOPSE library for benchmark MS-RCPSP 119

constraints and discrepancies (see Fig. 3). This not only aids in improving the under-
standing of complex optimization solutions but also in refining and enhancing these
methods through iterative feedback.

Fig. 3: Example of (invalid) visualized MS-RCPSP solution for instance 15_9_12_9

For researchers working on multi-objective optimization, multi-objective_visualizer.py
offers visualization of PFA to elucidate the trade-offs between competing objectives.
Meanwhile, single-objective_visualizer.py provides a graphical overview of the best,
worst, and mean fitness values throughout an experiment, enriching the analysis of
optimization processes.

Together, these scripts furnish researchers with tools for conducting experiments
that are not only more efficient and insightful but also more impactful, thereby enriching
the quality and depth of scientific investigations. These scripts serve as rapid, flexible
solutions and are planned to be integrated with the main C++ codebase in the future, en-
hancing the robustness and scalability of the software for broader scientific applications
and research.

Pareto Analyzer tool In multi- and many-objective optimization, the output of each
method is a set of non-dominated points.A point is dominated if any other point has at
least one better (lower, considering the MS-RCPSP) objective value and no worse ob-
jective value. All quality measures (QMs) used for multi-objective MS-RCPSP solution
are calculated based on the returned set, called Pareto Front Approximation (PFA). The
true Pareto Front (TPF) could be defined as a set of all non-dominated solutions and
can be considered the best available PFA. However, in practical real-world problems,
TPF is usually unknown. NadirPoint is a point with the worst possible values for all

Proceedings of the 14th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2024

120 K.Gmyrek et al.

objectives. For the MS-RCPSP, the worst value of makespan is the total sum of all tasks’
duration - all tasks are serial. The worst cost value is the cost of schedule, where the most
expensive resource performs all tasks. Worst skill overuse is achieved by assigning tasks
to the resources with the highest required skill level. The worst average use of resources
is the maximum makespan multiplied by the number of resources - 1 and divided by
the number of resources. The worst value of the average cash flow is the same as the
maximum cost.

Commonly used QMs are [12]: HyperVolume (HV), Inverted Generative Distance
(IGD) and Purity. All the QMs implemented in the Pareto Analyzer are described below.

HyperVolume " (HV) quantifies the volume of the objective space dominated by a
set of solutions. It reflects the spread and coverage of a PF. The higher the hypervolume,
the more comprehensive coverage of the objective space. It can be formally defined by
Eq. 15.

�+ (%�) = ⇤(
ÿ
B2%�

{B0 |B � B0 � B=038A }) (15)

where %� is an approximation of PF, B is the point of approximated PF, B=038A is a
#038A%>8=C, ⇤ is a Lebesgue measure, which is the generalization of a volume, � is a
domination relation.

Inverted Generative Distance # (IGD) captures both convergence and diversity. It
is an average distance from each TPF point to the closest point in PF as presented in
Eq.16, where 38 is the Euclidean distance for the 8-th point. Lower IGD values signify
that solutions are closer to the ideal Pareto front. As objectives vary in scale, using
absolute values for IGD calculation might favor certain objectives. For that reason,
points in PF are normalized beforehand, using minimum and maximum values from the
TPF.

�⌧⇡ (%�,)%�) =

qÕ |)%� |
8=1 3

2
8

|)%� | (16)

IGD is a relative metric that uses TPF as a reference point. As the real TPF is
unknown, it is constructed using results generated by all runs of all compared methods.

Purity " defined as in Eq.17, where #⇡ is the number of solutions (aggregated
from all runs) not dominated by the “True Pareto Front approximation" (TPFa), where
TPFa is constructed by merging a PFa from each method and removing dominated
solutions. %DA8CH calculated for a single method returns the value from 0 to 1 and could
be interpreted as the part of TPFa that the given method resulted in. However, the same
points (solutions) can be found by different methods. Therefore the sum of %DA8CH for
all investigated methods could exceed the value of 1.

%DA8CH(%�,)%�) = |#⇡ (%�,)%�) |
|)%� | (17)

As each method is evaluated multiple times, the Analyzer repeats the process: merges
the results returned by all the methods in the =’-th run, and calculates the %DA8CH per
run. At the end, it averages the final %DA8CH value.

Proceedings of the 14th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2024

iMOPSE library for benchmark MS-RCPSP 121

A crucial requirement for running the Analyzer is specifying the path to a config-
uration file as well as the instance name as a mandatory parameters. Configuration file
must be prepared in advance and should list paths to the experiment output directory
on separate lines. This structured format enables the Analyzer to systematically process
and analyze the outcomes for each method listed for a specified instance, ensuring a
thorough and organized evaluation process.

iMOPSE supports experiment reproducibility through the usage of seed parameters.
The first experiment is conducted under a seed provided by the user, and for each next
experiment, the seed is achieved by adding one to the initial seed value.

4.4 Case study - performing experiments with iMOPSE

In this section, we introduce an example experiment that users can conduct using
iMOPSE, designed to demonstrate its capabilities and help users become acquainted
with its operational workflow.
For the case study, we have selected the NSGAII and NTGA2 multi-objective opti-
mization methods to find PFAs for the 200_10_135_9_D6 MS-RCPSP instance. For
each method, the experiment will be repeated ten times. Thanks to iMOPSE being
outfitted with pre-loaded instances and pre-configured methods, conducting experi-
ments is straightforward. To examine two methods, users can execute the iMOPSE
program twice by inputting different parameters (see Fig. 4), or they can utilize the
automated_experiments.py script, which requires the path to the executable and in this
case, two sets of previously mentioned input parameters to run the experiments.

Fig. 4: iMOPSE input parameters for running NTGA2 and NSGAII

iMOPSE is designed to store the results of each run in a specified output directory. If
the directory does not exist, it will automatically create one. Should the output directory
already contain data from previous experiments, iMOPSE will halt its operation and
notify the user, preventing any loss or accidental overwriting of experiment data due to
an incorrect output directory path being provided.

Proceedings of the 14th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2024

122 K.Gmyrek et al.

The generated output data can subsequently be analyzed with the aid of additional
Python scripts and the Pareto Analyzer. Nonetheless, users have the flexibility to employ
alternative analysis software or methods according to their preferences.

Fig. 5: PFAs comparison for NTGA2 and NSGAII (200_10_135_9_D6 MS-RCPSP)

In the context of our case study, we will utilize the Pareto Analyzer to compute
metrics and generate a TPF approximation, which will be saved in the same output
directory. To run the Pareto Analyzer, the user has to provide a path to the configuration
file and the name of the examined instance, in this case, the configuration file contains
paths to the output directories of analyzed methods. Pareto Analyzer merges results
for each method and calculates TPF approximation by taking non-dominated solutions
from all methods as reference. QMs acquired by Pareto Analyzer in this case study:
NSGAII - �+ = 0.56 ± 0.05, �⌧⇡ = 0.02 ± 0.003, %DA8CH = 0.1 and for NTGA2 -
�+ = 0.76±0.01, �⌧⇡ = 0.002±0.0007, %DA8CH = 0.9. The results show that NTGA2
generates approximately 90% of PFA and strongly dominates NSGA-II. Moreover, the
PFAs can be visualized and compared by employing the multi-objective_visualizer.py
script, facilitating a visual comparison of the multi-objective optimization outcomes
(see Fig. 5).

5 Summary and future work

This article proposes a new open-source iMOPSE C++ library to support MS-RCPSP
researchers, students, and practitioners. The iMOPSE library consists of methods for

Proceedings of the 14th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2024

iMOPSE library for benchmark MS-RCPSP 123

solving single- and multi-objective NP-hard combinatorial problems, especially for
MS-RCPSP. Additionally, tools are added to validate and visualize MS-RCPSP results.
However, the iMOPSE schema is flexible and could be extended easily by adding new
methods and/or problems. Thus, the code of iMOPSE is open-source and published
on GitHub [5]. The future directions of iMOPSE library development could be con-
nected to support parallel computation. A multi-thread computation and a GPU-based
computation of metaheuristics should be considered to speed up computations.

References

1. Myszkowski, P.B., Skowroński M.E., and Sikora K. "A new benchmark dataset for multi-skill
resource-constrained project scheduling problem." 2015 Fed.Conf. on Comp. Sci. and Inf.
Systems (FedCSIS). IEEE, 2015.

2. Myszkowski P.B., Laszczyk M., Nikulin I., and Skowroński M., “iMOPSE: a library for
bicriteria optimization in Multi-Skill Resource-Constrained Project Scheduling Problem“,
Soft Computing vol.23, (2019), pp.3397–3410.

3. Myszkowski P.B., Laszczyk M., "Investigation of benchmark dataset for many-objective Multi-
Skill Resource Constrained Project Scheduling Problem", Applied Soft Computing, Vol 127,
(2022), 109253.

4. Myszkowski P.B., Skowroński M.E., Olech L., K Oślizło, “Hybrid ant colony optimization
in solving multi-skill resource-constrained project scheduling problem”, Soft Comp. 19 (12),
2015, pp.3599-3619.

5. –, http://imopse.ii.pwr.edu.pl – official homepage of iMOPSE project, includes MS-RCPSP
resources, GitHub – https://github.com/imopse/iMOPSE

6. Myszkowski P.B., Siemienski J.J., “GRASP Applied to Multi–Skill Resource–Constrained
Project Scheduling Problem”, Inter. Conf. on Comp. Collective Intelligence, ICCCI 2016,
pp.402–411.

7. Myszkowski, P.B., et al. "Hybrid differential evolution and greedy algorithm (DEGR) for
solving multi-skill resource-constrained project scheduling problem." Applied Soft Computing
62 (2018): 1-14.

8. Myszkowski P.B., Kalinowski D., and Laszczyk M., ”Co-Evolutionary Algorithm solving
Multi-Skill Resource-Constrained Project Scheduling Problem”, ACSIS 2017, Vol. 11, pages
75–82.

9. Myszkowski P.B., Laszczyk M., Lichodĳ J., ”Efficient selection operators in NSGA-II for solv-
ing bi-objective multi-skill resource-constrained project scheduling problem”, ACSIS 2017,
Vol. 11, pp. 83–86

10. Laszczyk M., and Myszkowski P.B., ”Improved selection in evolutionary multi–objective
optimization of multi–skill resource–constrained project scheduling problem.”, Information
Sciences 481 (2019): 412-431.

11. Myszkowski, P.B., and Laszczyk M., ”Diversity based selection for many-objective evolu-
tionary optimisation problems with constraints.” Inf. Sci. 546 (2021): 665-700.

12. Laszczyk M., and Myszkowski P.B. "Survey of quality measures for multi–objective optimi-
sation. Construction of complementary set of multi-objective quality measures." Swarm and
Evolutionary Computation, 2019

13. Hartmann S., Briskorn D., “An updated survey of variants and extensions of the resource-
constrained project scheduling problem“, European Journal of Operational Research (2022),
297(1), pp.1-14.

14. Verma S., Snasel V., ”A Comprehensive Review on NSGA-II for Multi-Objective Combina-
torial Optimization Problems“, IEEE Access (2021) vol.9., pp. 57757–57791.

Proceedings of the 14th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2024

124 K.Gmyrek et al.

15. Zheng Xiaolong, Wang Ling, Zheng Huany, ”A knowledge-based fruit fly optimization al-
gorithm for multi-skill resource-constrained project scheduling problem“, 2015 34th Chinese
Control Conf. (CCC), pp.2615–2620.

16. Huan-yu Zheng, Ling Wang, Xiao-long Zheng, ”Teaching–learning-based optimization al-
gorithm for multi–skill resource constrained project scheduling problem“, Soft Computing 21,
2017, pp.1537–1548.

17. Jian Lin, Lei Zhu, Kaizhou Gao, ”A genetic programming hyper-heuristic approach for the
multi-skill resource constrained project scheduling problem“, Expert Systems with Applica-
tions, vol.140 (2020), 112915.

18. M.Antkiewicz, P.B.Myszkowski, Balancing Pareto Front exploration of Non-dominated Tour-
nament Genetic Algorithm (B-NTGA) in solving multi-objective NP-hard problems with con-
straints, Information Sciences, (2024), Volume 667.

19. Z.T.Kosztyán, P.Harta, I.Szalkai, The effect of autonomous team role selection in flexible
projects, Computers & Industrial Engineering, vol 190, (2024), 110079,

20. J.Snauwaert, M.Vanhoucke, A classification and new benchmark instances for the multi-
skilled resource-constrained project scheduling problem, European Journal of Oper. Research,
Vol 307 (1), (2023), pp.1-19.

21. Ling Wang, Xiao-long Zheng, A knowledge-guided multi-objective fruit fly optimization
algorithm for the multi-skill resource constrained project scheduling problem, Swarm Evol.
Comput. 38 (2018) 54–63.

22. Lei Zhua, Jian Lin, Yang-Yuan Li, Zhou-Jing Wang, ”A decomposition-based multi-objective
genetic programming hyper-heuristic approach for the multi-skill resource constrained project
scheduling problem”, Knowl.-Based Syst. 225 (2021) 107099.

23. Deb, K. and Pratap, A. and Agarwal, S. and Meyarivan, T., A fast and elitist multiobjective
genetic algorithm: NSGA-II, IEEE Trans. on Evol. Comp. (2002).

24. Q.Zhang and H. Li, MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decom-
position, IEEE Trans. on Evol. Comp., vol 11(6), pp.712-731, (2007).

25. V.J.Amuso and J.Enslin, The Strength Pareto Evolutionary Algorithm 2 (SPEA2) applied
to simultaneous multi-mission waveform design, 2007 Inter. Waveform Diversity and Design
Conf., (2007), pp.407-417.

Proceedings of the 14th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2024

