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Abstract. This paper addresses the multi-activity multi-day shift scheduling
problem with a homogeneous workforce and quadratic cost function for over-
staffing. The objective of this problem is to assign shifts to employees and ac-
tivities within these shifts based on short time intervals, respecting numerous
hard constraints and minimizing overstaffing. We propose a multi-neighborhood
Simulated Annealing algorithm as a solution method, for which we introduce
eight neighborhood relations. The search space and neighborhood relations are
designed so that the search algorithm can be executed efficiently even on large
problem instances. The method is evaluated on a benchmark dataset consisting of
problem instances with varying complexity. The results show that our approach
can handle even the most complex tasks and is able to find feasible solutions
for 201 out of the 225 total problem instances, of which 99 were previously un-
solved. Our method outperforms the solver that produced the previous best known
solutions for the benchmark dataset and finds new best solutions for 190 of the
instances. The algorithm can create good schedules in a matter of a few seconds,
using limited computing resources.
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1 Introduction

The multi-activity shift scheduling problem occurs in many industries, particularly
in the service sector, commonly in retail environments. Making effective use of the
workforce while satisfying various organizational and social constraints is an important
task that could yield substantial cost savings. In these problems, an activity represents
an interruptible operation, which can be assigned to several employees at the same time.
There is a minimum required workforce for the activities at each period, to ensure an
acceptable service quality. This demand may fluctuate throughout the planning horizon.

Personnel scheduling has been a widely studied problem in the literature for a long
time, as shown by the numerous references given in the surveys of Ernst et al. [1, 2]. On
the other hand, multi-activity shift scheduling problems were relatively under-studied
until recently. One of the earliest works addressing this problem was by Loucks and
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Jacobs [3]. Since then, different versions of the problem emerged with vastly different
constraints, and various solving methods have been employed for solving these. Some
works consider anonymous shifts, where it is not specified which employee will be
assigned to a given shift. Dahmen, Rekik and Soumis [4] proposed an implicit model for
this task. Other works address a variation of the problem in which interruptible activities
and uninterruptible tasks should be scheduled at the same time. Lequy, Desaulniers and
Solomon [5] used a two-stage heuristic for this problem. Solving shift construction and
activity assignment simultaneously on a multi-day planning horizon is a challenging
task, which to the best of our knowledge, has been addressed only by a few papers.
The qualification to perform certain activities can also differ within the workforce in
some problems, such as in the work of Dahmen and Rekik [6], where they proposed a
hybrid heuristic for solving a multi-activity multi-day shift scheduling problem with a
heterogenous workforce. Most recently a mathematical programming-based approach
has been used for variants of multi-activity shift scheduling problems with anonymous
shifts by Römer [7], who proposed block-based state-expanded network models.

This paper addresses the multi-activity shift scheduling problem with a homogeneous
workforce in a multi-day environment as described in the formal description [8] of the
associated benchmark problem [9]. The task is to assign shifts to employees on the
given days, and to schedule the shifts and the activities within them, based on short time
intervals, in a way that respects all the various hard constraints. The cost function in this
problem is the quadratic penalization for overstaffing at each period for every activity.
There is one existing work addressing this exact problem, by Qu and Curtois [10], in
which they use Variable Neighborhood Search as a solution method.

We propose a multi-neighborhood Simulated Annealing approach for this problem.
Simulated Annealing was first introduced by Kirkpatrick, Gelatt and Vecchi [11], and
since then it has been successfully applied for many scheduling tasks in the literature,
such as for sports timetabling [12], nurse rostering [13], course timetabling [14, 15] and
most recently examination timetabling [16]. Our proposed approach for the multi-activity
multi-day shift scheduling problem is based on a mathematical model which enables
the efficient inspection of the various hard and soft constraints, and our introduced eight
different neighborhood relations allow for an effective traversal of the state space.

The organization of this paper is as follows. Section 2 overviews the multi-activity
multi-day shift scheduling problem addressed in this paper. Section 3 describes the
proposed local search method and the proposed neighborhood relations in detail. In
Section 4, we report and discuss the experimental results obtained on the benchmark
dataset. Section 5 provides concluding remarks and future plans.

2 Problem Definition

This paper addresses the Multi-Activity Multi-Day Shift Scheduling Problem, as de-
scribed in the formal description [8]. The mathematical model of the problem with
the formalization of the exact hard and soft constraints are available in the formal de-
scription. For clarity, we briefly summarize the key aspects of the problem. The goal
is to assign shifts to employees on the given days, and activities within these shifts.
An employee can work on one or more tasks during a shift, therefore activities should
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be scheduled within the shifts, each with an assigned task. In this context, activities
and tasks are considered equivalent. Therefore, when we refer to an activity, we are
indicating the duration during which an employee works on one of the specified tasks.
An employee must work on exactly one task at each interval of a shift, which means
that there can be no overlap between the different activities. Employees are assumed to
be homogeneous in the sense that they are all qualified to perform any of the different
tasks. The planning horizon is divided into 15-minute intervals and the scheduling has
to be done based on these time slots. The planning horizon always starts at 6:00 a.m. on
the first day and finishes at 6:00 a.m. on the last day. Therefore, if the planning horizon
is 7 days long, then it runs from 6:00 a.m. on day 1 to 6:00 a.m. on day 8.

There are various hard constraints for the problem, all of which must be respected
for a schedule to be considered feasible. An employee cannot start more than one shift
on a day, and a shift can only start at one of the time intervals between the following
times on each day: 0:00-0:00, 6:00-10:00, 14:00-18:00 and 20:00-23:45. Each shift
duration should be between 6 and 10 hours. After a shift finishes, an employee cannot
start another shift until at least 14 hours later. An employee cannot start shifts on more
than 5 consecutive days, in other words at least one day off must be taken on each 6
consecutive days. There are no limitations on the number of activities a shift can hold
or on the number of activity changes within a shift, however, every activity must be at
least 1 hour long before an activity change occurs or the shift ends.

In the different problem instances, it is specified for each employee how many total
minutes that employee should work at minimum and at maximum during the whole
planning horizon. The minimum cover requirement is also specified for each task at
each time interval, which is the minimum number of required staff to work on that task
at that interval.

The objective is to minimize assigning more staff than the maximum specified for
each task at each time interval. When there is overstaffing for a given task at a specific
interval, the penalty is the squared difference between the maximum required number
of staff and the actual number of staff. The total cost of a solution is the sum of all the
penalties for every time interval and task. Thus, the cost function is quadratic to ensure
that overstaffing is spread out over the planning horizon rather than occurring in a small
number of tasks and intervals, as the penalty for each additional unit of overstaffing for
a task at an interval increases more rapidly than linearly.

3 Solution Method

Our solution method is based on the Simulated Annealing [11] local search, for which
we designed a multi-neighborhood consisting of eight different neighborhoods. The key
components of the proposed method are described in this section.

3.1 Search Space

A state in the search space is the direct representation of all the shifts and activities
assigned to each employee, with their respective schedules based on the time intervals

Proceedings of the 14th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2024



128 László Kálmán Trautsch and Bence Kovari

Table 1: Decision variables

Symbol Definition

B
⌘,4
2 {0, . . . , |� | ⇤ |⇢ | � 1} Shift index of employee e on the ⌘-th 24-hour period of the

planning horizon. |� | is the total number of 24-hour periods and
|⇢ | is the total number of employees in the given problem
instance.

1B 2 Z+ Start time of shift B.
0B 2 {0, . . . , =} Activity count of shift B. The maximum number of activities per

shift (n) is a selectable parameter.
;B,0 2 Z+ Length of the a-th activity of shift s.
CB,0 2 {0, . . . , |) |} Task of the a-th activity of shift s. |) | is the total number of tasks

in the given problem instance.
Auxiliary variables
F4 2 Z+ Workload of employee e.
2C ,8 2 Z+ Cover of task C at time interval i.
5
3,4
2 {0, 1, 2} Count of non-empty shifts of employee e on day d.

of the planning horizon. The decision variables of our model with their descriptions are
shown in Table 1.

Although there are demand requirements for each time interval of the planning
horizon, we do not directly model the assignment of employees at each interval, as
this would imply an unnecessarily large model for our approach, because only the sum
of the workforce is relevant at each interval. Rather, we use variables to specify which
workers are assigned to which shifts at the given 24-hour periods, when these shifts start,
how many activities the shifts contain, how long these activities are, and which tasks
are assigned to them. Given these variables, a complete schedule can be composed,
and all the different constraints can be inspected. To enable the efficient inspection
of the various constraints, different auxiliary variables can be introduced, offering the
necessary aggregated information directly. Our key auxiliary variables are presented in
Table 1.

In our model, each employee must have one shift assigned to them at each 24-hour
period, but a shift can be empty meaning that it should be ignored from the complete
schedule and the relevant employee does not start a working shift at that period. A shift
must start at one of the time intervals of the relevant 24-hour period, but it can extend
beyond that period. We base our shifts on 24-hour periods of the planning horizon rather
than on days, because this way fewer variables are needed for modeling the shifts, and
all the shifts can be handled uniformly. If shifts were created for each day, then the start
and the end of the planning horizon would cut into the shifts on the first and the last day
respectively, making allocation to time intervals completely different on those days. The
first 24-hour period starts at the beginning of the planning horizon, which is at 6:00 a.m.
on the first day, and ends on the next day at 6:00 a.m. The number of 24-hour periods is
one less than the number of days in a problem instance.
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The problem constraints can be reformulated for our decision variables with a
straightforward matching between them. The only difficulty emerges because a shift
can start at 0:00 on a given day, which time interval is part of the 24-hour period of
the previous day. Thus, two shifts could start on the same day, which is a constraint
violation. In order to restrict this, we modified the length of the minimum rest time to 24
hours for a shift starting at 0:00. The auxiliary variables for the number of non-empty
shifts of each employee on each day are created to help the inspection of the constraint
on the number of consecutive working shifts. An example of two shifts of an employee
starting on the same day would be that the first shift starts at 0:00 and the second one
starts at 20:00. In that case the corresponding “fd,e” value would be 2, indicating that
two shifts start on that day for the employee.

To make the search space more connected, certain hard constraints are relaxed and
made soft constraints, but with high weights applied to the cost for violating them. Thus,
the cost function of a state in the search space is the sum of the cost induced by the soft
and the hard constraints. The actual weights of the hard constraints are set by parameters
associated with them. The workload constraints, the minimum cover constraint, the
maximum number of consecutive shifts constraint, the minimum rest time constraint,
and the constraints regarding the length of shifts and activities are relaxed. Linear cost
functions are used, except for the minimum and maximum shift length constraints, for
which the deviation from the minimum and maximum length is penalized quadratically.

A parameter can be set to control the maximum number of activities per shift. The
variables associated with the activities are created based on this parameter, for each shift
as many as the parameter specifies. Based on the maximum shift length and minimum
activity length hard constraints, at maximum 10 activities per shift are needed to create
any feasible solution. A higher value can be set for this parameter if we want the search
algorithm to move more freely in the search space by adding more activities, but the
problem constraints need to be modified in this case. A value lower than 10 can speed up
the search for problem instances with few tasks, although finding the optimal solution
might become theoretically impossible.

The activity count variable specifies how many activities are actually relevant from
all the activities of a shift. When the activity count of a shift is lower than the maximum
number of activities per shift, that means that the following activities are empty, and
their tasks and lengths should be ignored. A shift is empty when its activity count is
zero.

3.2 Initial Solution

For the initial solution of the search, an empty schedule is created based on the number of
days and employees of the given problem instance, where each employee has an empty
shift assigned to them on each 24-hour period of the planning horizon. The activity
count of each shift is zero, which means that the other decision variables associated with
the shift are irrelevant until an activity is assigned by a move from the neighborhood
relations. The auxiliary variables also have zero values in this initial state. The solution
is infeasible, and the total cost is calculated and used as the initial cost. This empty
schedule is used as the initial state, which is populated with working shifts by the
neighborhood relations during the search.
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3.3 Neighborhood Relations

We propose a multi-neighborhood on the previously described search space, composed
of the union of eight neighborhoods:

– AddShiftActivity: A random empty shift is selected, and an activity is added to it
with a random task. A random start is also assigned to the shift and a random length
to the activity. The start of the shift is selected from the valid shift start times of the
day. The length is selected from the possible shift lengths that do not extend beyond
the planning horizon, given the already selected shift start time.

– RemoveShiftActivities: A random non-empty shift is selected, and all its activities
are removed.

– ChangeShiftStart: A random non-empty shift is selected, and its start is changed
to a different, random start. The start is selected from those valid shift start times of
the day that would not make the shift extend beyond the end of the planning horizon,
given its current length.

– SwapShifts: A random non-empty shift is selected, and its assignment is swapped
between its original employee and the employee of an other random shift from the
same day. The other shift can be either empty or not.

– ChangeActivityLength: A random non-empty activity is selected, and its length is
changed to a different, random length. The length is selected so that the shift would
not extend beyond the planning horizon, and the length of the shift up to the end of
the selected activity would not be longer than the maximum shift length and shorter
than the minimum shift length. The minimum activity length is also respected when
the previous criteria enable it.

– ChangeActivityTask: A random non-empty activity is selected, and its task is
changed to a different, random task.

– AddLastActivity: A random non-empty and non-full shift is selected, and a new
activity is added to its end with a random task, which is different than the task of the
previous activity. A random length is also assigned to the activity, and it is selected
so that the shift would not extend beyond the planning horizon, and the shift would
not be longer than the maximum shift length. When the previous criteria enable it,
the minimum activity length is also respected.

– RemoveLastActivity: A random shift is selected from the shifts that have at least
two activities, and the last activity of that shift is removed.

At each iteration step of the search, one of the eight neighborhood types is selected
with probabilities specified by associated parameters, then a move is randomly drawn
from the selected neighborhood. When the random selection of a variable cannot be
made during a move, the move is instantly rejected. For example, if there are no shifts
with at least one activity assigned to them, then moves from the RemoveShiftActivities
neighborhood are rejected.

3.4 Simulated Annealing

As the metaheuristic to guide the search, we implemented the Simulated Annealing
algorithm [11]. The method starts from an initial random state and at each iteration
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selects a random move from its neighborhood as explained above. Calling � 5 the
change in cost induced by the selected move, the move is always accepted if � 5  0, and
it is accepted with probability (1) when � 5 > 0, where )0 is the temperature parameter
controlled by the algorithm.

4
�� 5 /)0 (1)

We implemented the Fast Simulated Annealing [17] cooling scheme to determine
the temperature at each iteration, based on the number of the current iteration (t) and
the initial temperature (T0), as described by equation (2).

)0 (C) =
)0

(1 + C) (2)

The search is repeated for a set number of iterations, which number is a parameter
of the metaheuristic.

3.5 Efficient Implementation

The neighborhood relations and decision variables were designed to enable efficient
implementation of the search algorithm, so that a high number of iterations could be
executed even on large problem instances. The change in cost induced by new candidate
moves should be calculated only based on the constraints and variables directly relevant
to the actual neighborhood type and the exact move, and the state should be modified
only if the move is accepted. The proposed auxiliary variables are used for inspecting the
relevant constraints of the actual neighborhood relation. Shift indexes were introduced for
achieving low computational complexity when executing a SwapShifts move between
two employees. We also used other auxiliary variables and structures to help select
random variables and calculate the changes in cost during the search, but these are not
reported in this paper for the sake of brevity.

4 Experimental Results

4.1 Problem Instances

The algorithm was tested on the instances of the publicly available multi-activity shift
scheduling benchmark dataset [9]. The benchmark contains 225 different problem in-
stances, with varying difficulty. There are instances with lengths of 7, 14, and 28 days.
The number of staff varies from 10 to 150, and the number of tasks varies from 1 to
19. The problem size tends to increase with the instances. The features of the instances
are shown in Table 4. in the Appendix. It is known that every instance has a feasible
solution, due to the way the instances were created [10].
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4.2 Parameter Settings

A single parameter configuration was tested during the experiments on the different
problem instances, which is shown in Table 2. The table includes the parameters for
the Simulated Annealing metaheuristic and the weights assigned to the various hard
constraints.

Table 2. Parameter configuration

Parameter Assigned value
Initial temperature 800,000
Number of iterations 10,000,000
Maximum number of activities per shift 10
Each neighborhood relation probability 0.125
Weight for minimum rest time constraint 15,000,000
Weight for minimum workload constraint 1,500,000
Weight for maximum number of consecutive
working days constraint

1,000,000

Weight for shift length constraint 225,000
Weight for maximum workload constraint 150,000
Weight for minimum activity length constraint 150,000
Weight for minimum activity cover demand
constraint

10,000

The hard constraint weights are based on the problem instance files in XML format
found in the benchmark dataset, except for the weight for violating the minimum rest
time, for which we assigned a weight higher than the others. The neighborhood relation
probabilities were selected uniformly. The number of iterations was set so that the
runtime of the search on even the hardest problem instance would take no longer than 5
seconds. The initial temperature was chosen intuitively, based on trial runs on the hardest
problem instance. It is important to note that the presented method could significantly
benefit from parameter tuning, and employing a different cooling scheme or stopping
criterion might further improve the results.

4.3 Experimental Setup

The solution method was implemented in C++ and compiled using g++. The experiments
were run on a machine with 16 GB of RAM and a 3.3 GHz Intel Core i5-4590 processor,
using a single core during the tests. The number of iterations was selected so that the
search on each instance would take no longer than 5 seconds. A single run of our solution
method was performed on each problem instance of the dataset.

4.4 Results

The results of our solution method on each problem instance are shown in Table 4. in
the Appendix. We compare our results achieved by Simulated Annealing (SA) to the
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solver that produced the existing best known solutions for the benchmark dataset, the
method by Qu and Curtois [10], which uses Variable Neighbourhood Search (VNS).
The best result found for a problem instance is highlighted in bold and underlined. Only
feasible solutions are reported, in which none of the hard constraints are violated. A cell
contains “-“ if no feasible solution was found by a method under its time limit.

The authors of the VNS method used a time limit of 10 minutes for their experiments
on each instance, and they conducted their tests on a comparable machine (Intel Core
i5-4690K CPU 3.50GHz) to the one used in our tests.

For our solution method, we selected the number of iterations so that the runtime of
the search on each instance would not take longer than 5 seconds. The actual runtimes
ranged from 2.079 seconds on the simplest instance to 4.073 seconds on the most
complex one. It should be noted that the runtime scales well with the problem complexity
when using a fixed number of iterations for the search. Less than twice as much time
was needed for a problem instance with a four times longer planning period, fifteen
times as many staff, and nineteen times as many tasks, and it should be also considered
that the simplest instances had one task to be scheduled, meaning that moves from
three neighborhood types were always rejected in those cases, reducing the runtime.
The memory usage of the algorithm was also efficient, less than 4 MB of memory was
needed during the searches.

Table 3. shows an overview of the results on the benchmark dataset, comparing our
approach to the VNS method. Simulated Annealing was able to find feasible solutions
for most of the problem instances (201 out of the 225 total), of which 190 are the best
solutions found so far. It was able to find feasible solutions for many previously unsolved
problem instances, even for the most complex ones.

Table 3. Overview of the comparative results on the benchmark dataset

VNS [10] SA
Time limit 10 minutes 5 seconds

Number of instances for which
feasible solutions are found

107 201

Number of instances for which best
solutions are found

16 190

On the other hand, our approach could not find feasible solutions for some simpler
instances, 5 of which have been solved by VNS. The size of a problem instance does
not seem to affect finding a feasible solution for the Simulated Annealing. The search
randomly gets stuck in an infeasible local optimum in some cases, which could be
due to the selected cooling scheme or the parameters of the metaheuristic. Only a
single parameter configuration with equal probabilities for all neighborhood types was
tested, which implies that applying parameter tuning could greatly improve the results.
Improving the neighborhood relations and introducing new ones could also help escaping
the local optima, and different selection of weights for the hard constraints should also
be inspected. A single search was conducted on each problem instance, but the method
could benefit from selecting the best solution from more searches, run both in parallel
and by applying restarts.
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The reported solutions were all validated using a verification software, which is
available for the benchmark dataset [9]. The software can be used to view and verify
the solutions created for the problem instances. It is able to identify any hard constraint
violations and calculate the cost function of a complete schedule. The accuracy of our
new computational results was ensured by using this validation.

5 Conclusions and Future Work

In this paper, we presented a multi-neighborhood Simulated Annealing method for
addressing a multi-activity multi-day shift scheduling problem. We introduced eight
different neighborhood relations for the search algorithm. We tested our approach on a
benchmark dataset and compared the results with the best existing solution available for
the problem. Our method was able to outperform the previously developed algorithm
on most of the problem instances and was able to find feasible solutions for many of
the unsolved ones. The results show that our approach can produce good schedules in
a matter of a few seconds, using limited computing resources. The method would be
able to find solutions for even larger problems than the most complex instances of the
benchmark dataset, as the results suggest. However, in some cases, it was not able to
produce feasible solutions even for some simpler instances, therefore there is still room
for improvement.

As part of our future work, first, we will investigate the possibility of improving
our proposed multi-neighborhood by introducing new types of relations and modifying
the existing ones. Secondly, we plan to configure our algorithm by using automated
parameter tuning to find better values for the probabilities of the neighborhood types,
the hard constraint weights, the initial temperature, and finally for the maximum number
of activities within the shifts. Applying a different cooling scheme and stopping criterium
might also improve the results. We will conduct further evaluations of our approach,
including experiments with longer runtimes, enabling the restart of the search method
multiple times on each problem instance, from which the best solution can be selected.
We also plan to extend our method to allow running searches on multiple threads in
parallel. Finally, we will create an iterative procedure for populating the initial state of
the search. This procedure would take every constraint into account for creating a good
initial solution in a short timeframe, thus speeding up the search method and possibly
enabling the production of better solutions.
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Appendix

Table 4. Features of the problem instances and comparative results
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Inst. Days Staff Tasks
VNS
[10] SA Inst. Days Staff Tasks

VNS
[10] SA

1 7 10 1 387 383 114 14 80 8 - 5799
2 7 10 1 176 140 115 14 80 10 - 4006
3 7 10 1 317 290 116 14 90 3 5598 5214
4 7 10 1 328 304 117 14 90 5 8818 7985
5 7 10 2 115 37 118 14 90 6 - 8663
6 7 20 1 900 779 119 14 90 9 - 5399
7 7 20 1 818 783 120 14 90 12 - 3175
8 7 20 2 884 775 121 14 100 4 - 6946
9 7 20 2 500 353 122 14 100 5 - 9009
10 7 20 3 268 59 123 14 100 7 - 9779
11 7 30 1 844 788 124 14 100 10 - 7867
12 7 30 2 1541 1501 125 14 100 13 - 4061
13 7 30 2 1440 - 126 14 110 4 7573 7151
14 7 30 3 1469 - 127 14 110 6 - 9879
15 7 30 4 553 270 128 14 110 8 - 10015
16 7 40 2 1883 1580 129 14 110 11 - 7898
17 7 40 2 1831 1713 130 14 110 14 - 3758
18 7 40 3 1737 1457 131 14 120 4 7475 6877
19 7 40 4 1437 1034 132 14 120 6 - 11057
20 7 40 5 955 457 133 14 120 8 - 11847
21 7 50 2 1740 1647 134 14 120 12 - 7340
22 7 50 3 2646 2596 135 14 120 15 - -
23 7 50 4 2446 2115 136 14 130 5 - 8764
24 7 50 5 1795 1395 137 14 130 7 - 12460
25 7 50 7 1344 758 138 14 130 9 - 11958
26 7 60 2 1734 1594 139 14 130 13 - 7345
27 7 60 3 2904 2622 140 14 130 17 - 5093
28 7 60 4 3248 2836 141 14 140 5 8013 8859
29 7 60 6 2463 1918 142 14 140 7 - 12725
30 7 60 8 - 1121 143 14 140 10 - 13013
31 7 70 3 2574 2466 144 14 140 14 - 9022
32 7 70 4 3288 3182 145 14 140 18 - 5706
33 7 70 5 3170 3025 146 14 150 5 - 8763
34 7 70 7 - - 147 14 150 8 - 14321
35 7 70 9 - 1386 148 14 150 10 - 14824
36 7 80 3 2709 2536 149 14 150 15 - -
37 7 80 4 3335 3422 150 14 150 19 - 6012
38 7 80 6 3894 3610 151 28 10 1 1677 1486
39 7 80 8 - 2709 152 28 10 1 1509 1341
40 7 80 10 - 1787 153 28 10 1 1729 1597
41 7 90 3 2575 2643 154 28 10 1 1535 1299
42 7 90 5 4317 4302 155 28 10 2 - 255
43 7 90 6 4877 4463 156 28 20 1 3766 3565
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Inst. Days Staff Tasks
VNS
[10] SA Inst. Days Staff Tasks

VNS
[10] SA

44 7 90 9 - 3109 157 28 20 1 3523 3312
45 7 90 12 - 1539 158 28 20 2 3327 2663
46 7 100 4 3471 3635 159 28 20 2 2989 2071
47 7 100 5 4837 - 160 28 20 3 1803 696
48 7 100 7 5302 4331 161 28 30 1 3505 3264
49 7 100 10 - 3662 162 28 30 2 6551 5499
50 7 100 13 - 2171 163 28 30 2 6209 5370
51 7 110 4 3338 3553 164 28 30 3 - 4163
52 7 110 6 5084 5460 165 28 30 4 - -
53 7 110 8 6237 4980 166 28 40 2 7613 7173
54 7 110 11 - 3388 167 28 40 2 7317 7177
55 7 110 14 - 2694 168 28 40 3 8270 6710
56 7 120 4 3486 3410 169 28 40 4 - 5940
57 7 120 6 5991 5267 170 28 40 5 - 2960
58 7 120 8 6749 5931 171 28 50 2 6843 -
59 7 120 12 - 4643 172 28 50 3 - 8896
60 7 120 15 - 2714 173 28 50 4 - 7765
61 7 130 5 4932 4485 174 28 50 5 - 6374
62 7 130 7 6720 6366 175 28 50 7 - 3293
63 7 130 9 7086 6264 176 28 60 2 7179 6861
64 7 130 13 - 4449 177 28 60 3 - -
65 7 130 17 - - 178 28 60 4 - -
66 7 140 5 4057 4432 179 28 60 6 - 8477
67 7 140 7 6009 6370 180 28 60 8 - 4513
68 7 140 10 - 6719 181 28 70 3 - 10393
69 7 140 14 - 4462 182 28 70 4 - -
70 7 140 18 - 2685 183 28 70 5 - 13913
71 7 150 5 4063 4419 184 28 70 7 - 10329
72 7 150 8 7590 7367 185 28 70 9 - 5941
73 7 150 10 - 7330 186 28 80 3 11181 10544
74 7 150 15 - 5493 187 28 80 4 - 14658
75 7 150 19 - 2955 188 28 80 6 - 15811
76 14 10 1 598 550 189 28 80 8 - 10153
77 14 10 1 814 775 190 28 80 10 - 6690
78 14 10 1 634 581 191 28 90 3 - 10314
79 14 10 1 607 509 192 28 90 5 - -
80 14 10 2 292 88 193 28 90 6 - 16767
81 14 20 1 1659 1580 194 28 90 9 - 13170
82 14 20 1 1643 1561 195 28 90 12 - 5338
83 14 20 2 1387 1053 196 28 100 4 - 14039
84 14 20 2 1168 906 197 28 100 5 - -
85 14 20 3 520 123 198 28 100 7 - 20037
86 14 30 1 1738 1725 199 28 100 10 - 13458
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Inst. Days Staff Tasks
VNS
[10] SA Inst. Days Staff Tasks

VNS
[10] SA

87 14 30 2 2672 2541 200 28 100 13 - -
88 14 30 2 2780 2539 201 28 110 4 - 14678
89 14 30 3 2551 - 202 28 110 6 - -
90 14 30 4 - 1145 203 28 110 8 - 22346
91 14 40 2 3514 3324 204 28 110 11 - 15528
92 14 40 2 3767 3588 205 28 110 14 - 8984
93 14 40 3 3820 3232 206 28 120 4 - 14038
94 14 40 4 3980 3417 207 28 120 6 - 22210
95 14 40 5 - 1264 208 28 120 8 - -
96 14 50 2 3666 3390 209 28 120 12 - 15592
97 14 50 3 4921 4278 210 28 120 15 - 12832
98 14 50 4 4802 4095 211 28 130 5 - 17786
99 14 50 5 - 3602 212 28 130 7 - -
100 14 50 7 - 947 213 28 130 9 - 25974
101 14 60 2 3419 3327 214 28 130 13 - 15203
102 14 60 3 5473 5309 215 28 130 17 - -
103 14 60 4 5942 5914 216 28 140 5 - 18010
104 14 60 6 5620 4278 217 28 140 7 - -
105 14 60 8 - - 218 28 140 10 - 25463
106 14 70 3 5137 5170 219 28 140 14 - 19802
107 14 70 4 6892 6546 220 28 140 18 - -
108 14 70 5 - 5705 221 28 150 5 - -
109 14 70 7 - 4684 222 28 150 8 - 29983
110 14 70 9 - 3434 223 28 150 10 - 28523
111 14 80 3 5510 5310 224 28 150 15 - 19259
112 14 80 4 6748 7113 225 28 150 19 - 13429
113 14 80 6 8124 7034
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