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Abstract. In a perfect world, each high school student could pursue their interests
through a personalized timetable that supports their strengths, weaknesses, and
curiosities. While recent research has shown that school systems are evolving to
support those developments by strengthening modularity in their curricula, there
is often a hurdle that prevents the complete success of such a system: the schedul-
ing process is too complex. While there are many tools that assist with scheduling
timetables in an effective way, they usually arrange students into groups and classes
with similar interests instead of handling each student individually. In this paper,
we propose an extension of the popular XHSTT framework that adds two new
constraints to model the individual student choices as well as the requirements
for group formation that arise from them. Those two constraints were identi-
fied through extensive interviews with school administrators and other school
timetabling experts from six European countries. We propose a corresponding
ILP formulation and show first optimization results for real-world instances from
schools in Germany.

Keywords: Educational Timetabling, High School Timetabling, Integer Linear
Programming, XHSTT.

1 Introduction

As educational systems continuously evolve, crafting close-to-optimal high school
timetables continues to pose a major challenge. An important aspect that contributes to
this phenomenon is the increasing demand for personalized and flexible learning expe-
riences by all stakeholders of the educational system (policy makers, teachers, students
and society in general). This demand results in modular educational systems, where
students can choose parts of their own curriculum individually. However, conventional
approaches to the creation of timetables can not fulfill the diverse needs of students. This
paper addresses the need for innovation in the encoding of constraints for high school
timetables, aiming to support the flexibility that modern modular educational systems
afford to students.

While traditional formats of constraint encoding do support most of the requirements
that schools have on timetables including the possibility to work with individual students
instead of classes, they are not able to represent the requirements of each student pursuing

Proceedings of the 14th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2024



140 A. Krystallidis and R. Ruiz-Torrubiano

diverse individual academic interests in an adaptive manner. In this paper, we present an
extension of the XHSTT format [11] (introduced in the Third International Timetabling
competition [10]) that incorporates two new constraints, making possible to encode
flexible student course choices and class formation requirements while still supporting
all previous instances developed for this format. The need for those two new constraint
types became apparent through recent research that explored the timetabling demands
for schools across central Europe [12] which shows that there is a trend of enabling
students to follow their individual interests. Even though this new formulation features
students choosing their own respective courses, the problem is still very different from
University Course Timetabling Problems [8,7], which were already found to be solvable
when transformed to the XHSTT format [4].

While, our new formulation has some similarities to the student choices featured
in the Post Enrolment based Course Timetabling (PE-CTT) Problem, which was first
presented in the second track of the ITC 2007 [6], the problem we are modeling here has
some key differences: In the PE-CTT Problem students select a set of events that they
want to attend without providing alternatives or preferences. It is a hard constraint that
they visit all their selected events, while in our newly formulated Constraints it is possible
to specify that only a subset of a flexible quantity should be attended. Some additional
flexibility is provided in the University Course Timetabling Problem featured at the ITC
2019 [9]. While the students still attend a fixed amount of selected courses, the courses
themselves can be split into structured subparts that could be used to model distributions
of students to equivalent courses (e.g. Math_1_1 and Math_1_2). However, to the best of
our knowledge, there is no constraint in any Educational Timetabling format that would
enable us to model student choices on the individual level in the flexible manner that
is desired in modular educational systems. Finally, since we are solving High School
Instances and not University Instances, we use almost all the different constraints of
XHSTT, so it is much more efficient to extend this format instead of an University
Timetabling format that focuses on other qualities that we mostly do not need (e.g.
differentiating between different weeks of the semester and complex orderings and
structures of events).

We hope that by extending the standard high school timetable format we will be
able to spur new original research that adapts and improves methods of automatic
timetabling for modular high schools. We support these developments explicitly by
providing an ILP formulation that extends one of the state-of-the-art ILP formulations
by Kristiansen et al. [5] as well as 18 publicly available instances that include the new
constraints. Additionally, we present first results for upper bounds using our ILP.

This paper is structured as follows: In Section 2, we introduce the new constraints as
well as how they can be used and provide examples of how to encode various situations
that may occur in modular school timetables. In Section 3, we provide a corresponding
extension to the well-known ILP formulation by Kristiansen et al. [5]. In Section 4, we
describe the new instances in our format and provide some first results. The instances are
made publicly available as a benchmark set for modular high school timetabling. Finally,
in Section 5, we provide an overview of our findings and describe possible directions of
future research.
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2 An Extension to the XHSTT Format

The XHSTT format [11] is the most widely used format for encoding the High School
Timetabling Problem. It is versatile enough to encode many real-world instances of
timetable requirements from various schools around the world accurately. However, in
recent years there has been a trend of giving students more choices in what individual
courses they wish to attend. While some of the requirements that arise from those choices
can be modeled using the existing constraints, others are not supported by the XHSTT
format. Since the goal of the XHSTT format is to provide a way to encode timetable
requirements in a unified way, we find it important that those recent developments
reflect themselves in the form of an extension of the format. This extension should be
as small as possible while still being able to accurately encode the new constraints for
timetables. Furthermore, we find that everything that can be encoded with the existing set
of constraints should still be encoded using them (even when it is in a slightly roundabout
way) in order not to put an unnecessary strain upon those who maintain and possibly
want to extend existing methods and solutions for solving the High School Timetabling
Problem. Finally, it is also important that the format only includes constraints that are
actually useful for those in charge of creating the timetables. That is why the constraints
proposed in this paper are chosen based on a study [12] where experts across Europe
were asked about the challenges they face when creating timetables for high schools. The
result of all of those requirements are three new constraint categories that encode student
choices, class size requirements and class size balance. Of those three requirements, the
class size requirements will be encoded using the existing constraints of the XHSTT
format while the other two require one new constraint type each.

2.1 Student Choices

From the interviews conducted in the paper by Ruiz-Torrubiano et al. [12] it becomes
apparent that many schools offer course choices to students in one form or another,
especially in the respective upper cycles. Such choices can range from choosing a general
direction (profile) for their studies, which usually results in scheduling all students with a
given profile together, to individual course choices subscribing them to specific courses
together with other students that made the same election. However, once there is a
certain level of modularity it is usually in practice infeasible to schedule the courses
in such a way that every student can attend exactly the courses they have selected. To
deal with that problem schools have adopted two different methods to manage student
course choices. Either they create a timetable first, and students choose lectures that fit
into their individual schedules, or students give priorities and/or alternatives for their
choices and the timetabler tries to fulfill those preferences to the best of their ability.
The first possibility is already supported in XHSTT by simply creating courses with no
classroom assignment together with some time preference constraints for said courses.
However, the second method requires a possibility to model how many from a pool of
courses can be attended on an individual resource level. So for example, a student that
wishes to learn another language might choose to attend a Spanish course, if they do
not get into that course they would like to learn Italian and if there is also no more room
in the Italian course they might want to learn French. It is a hard requirement for that
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student that they will exactly attend one of those courses. Another student may want to
specialize in natural sciences, and they want to attend biology, physics and chemistry
eventually while not caring exactly how many of those subjects they will attend in the
following year as long as it is at least one. An example for how this constraint may
look like can be seen in Figure 1. Additionally, the school might also support that
students provide weights (preferences) to their choices. Note that while we designed this
constraint to model course choices for students, it can also be used to model teaching
preferences, which are also a common theme for many high schools.

All those requirements can be unified into a new constraint type which we call
Student Choice Constraint. The constraint has the standard children that all XHSTT
constraints share (Id, Name, Required, Weight, CostFunction) the AppliesTo tag consists
of Resources and ResourceGroups children. Additionally, the constraint has the child
categories EventGroups, Minimum and Maximum.

1 < S t u d e n t C h o i c e C o n s t r a i n t Id=" StudentChoice_ST_Bob ">
2 <Name>StudentChoice_ST_Bob< / Name>
3 <Requ i r ed > t r u e < / Requ i r ed >
4 <Weight>50< / Weight>
5 < Co s t Fu nc t i o n > L i n e a r < / Co s t Fu nc t i o n >
6 <Appl i e sTo >
7 <ResourceGroups / >
8 < Resou r ce s >
9 <Resource Re f e r ence ="ST_Bob" / >

10 < / Resou r ce s >
11 < / Appl i e sTo >
12 <EventGroups>
13 <EventGroup Re f e r ence =" Bio logy_10 " / >
14 <EventGroup Re f e r ence =" Phys i c s_10 " / >
15 <EventGroup Re f e r ence =" Chemis t ry_10 " / >
16 < / EventGroups>
17 <Minimum>1< / Minimum>
18 <Maximum>3< / Maximum>
19 < / S t u d e n t C h o i c e C o n s t r a i n t >

Fig. 1: Student Choice Example

– AppliesTo: Each resource that is either part of the Resources child or is part of
a resource group, which is mentioned in the ResourceGroups child, is a point of
application for this constraint.

– EventGroups: All Event Groups mentioned in this child are relevant to the con-
straint.

– Minimum: Each resource this constraint applies to has to attend at least Minimum
Event Groups from the relevant Event Groups for this constraint.
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– Maximum: Each resource this constraint applies to can, at most, attend Maximum
Event Groups from the relevant Event Groups for this constraint.

The deviation of the constraint is described as follows: For each resource part of the
Resources and ResourceGroups the deviation is equal to the number of Event Groups
that the resource attends, which exceed the Maximum or fall short of the Minimum.
Note that we define attendance as visiting any subevent of a given Event Group.

This constraint can also be used to encode weighted preferences. Imagine a student
who wants to attend one out of 3 courses �, ⌫, and ⇠ but has a preference order of
� � ⌫ � ⇠. First, a hard constraint can be added where the EventGroups child contains
all 3 courses, and the Minimum and Maximum are set to 1. We then add a soft constraint
containing only Events � and ⌫ and another constraint containing only event �. Again
we set the Minimum and Maximum to 1 for both soft constraints. Depending on the
weights of the Soft constraints we can now adjust the importance of the student getting
his first or second choice.

2.2 Class Sizes

Whether it is due to room limitations, pedagogic restrictions, or legal reasons (supervi-
sion duties), schools usually have limits on how large the classes for each course can be
at most. In a system without student choices, this is usually enforced when the classes
are put together before scheduling the individual lessons. Events where the classes are
split and mixed are often modeled using one main Event (to which the whole class
is assigned) and multiple subevents that are all linked to the main event under the as-
sumption that none of the students attend multiple of those subevents. This works, for
example, if one wants to split all students from one class level into two math groups, and
every student has to choose a second foreign language. However, this method quickly
becomes more complex the more individual the student choices become since it most
likely won’t be possible to build sets of subjects that have no student overlaps while
also not creating many idle periods in student timetables and giving all of the students
their preferred subjects, which means that there is a need to find some optimal balance
between those constraints. Usually there are restrictions that don’t allow for any idle time
in student timetables during certain periods, while other periods are more flexible (e.g.,
in the afternoon). Building the classes as part of the optimization problem allows the
solver to find which classes to group dynamically based on when it schedules them, also
taking into account how important it is to fulfill each individual student’s choice. We can
model those restrictions using the existing XHSTT constraints, which makes it easier
for existing approaches to adapt to those changes. In the following, we describe exactly
how to model this class size problem because the translation into XHSTT constraints is
not completely trivial. However, first, we want to recap how the XHSTT format works
on a high level.

An instance in the XHSTT format consists of Times, Resources, Events, and Con-
straints. The Events have a duration, which specifies how many time slots must be
assigned to them. How exactly those times are distributed over the week is specified
as part of the Constraints. We say that each block of consecutive time slots that is
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part of the final schedule builds a SolutionEvent (or subevent). Each of those Solu-
tionEvents specifies some resource requirements that can either come in the form of a
fixed AssignedResource or a flexible UnassignedResource. In the case of an Unassigne-
dResource, there are often some constraints that restrict the pool of possible concrete
resource assignments. Finally, the set of Constraints also consists of other types of
Constraints that further impose limits on when, how often, and in what constellations
Events, Resources, and groups of Events and Resources are scheduled.

With that basic understanding of the XHSTT format, we can now get into how we
modeled the class sizes. First of all, we assume that three resource types exist (but it
is possible to arbitrarily add more): Teachers, Rooms, and Individual Students. If fixed
classes still exist for certain courses they can easily be modeled by assigning all students
of that class directly to that course. For those courses that should be built by the solver,
we create three event types:

1. One main event that will be used in all constraints that handle the time assignment
of the lessons. This main event will also be used to either directly assign a room
and teacher or model the resource preferences for those two resource types. Any
restrictions on how the event should be split and distributed over the week will also
be applied here

2. As a next step, we create one event for each student resource that is required to
fulfill the minimum student number of the course B<8= (e.g., if it needs at least 10
students to build a language class we create 10 events). They only have one student
event resource which is usually not preassigned (can optionally be preassigned to
a specific student if attendance is mandatory). We also need a hard Assign and
Prefer Resource Constraint so that only those students who choose the course can
be assigned and all events must have a student assigned.

3. Next, we need to add a hard Avoid Split Assignments constraint for each Event
(modeled with an Event Group that only contains one student Event) which ensures
that two subevents of the same Event can’t have different student assignments.

4. Afterwards, we add a hard Link Events Constraint to the main Events so that all
subevents must have the exact same time assignments as the main Event. Through
hard Avoid Clashes Constraints on the individual students this also guarantees that
each subevent must have a different student assigned. We will henceforth call Events
of this type "minimum requirement events".

5. As a final step, we create Events that are very similar to the previous ones but
contain those students that are optional from the Event perspective. We create a
total of B<0G � B<8= events of this type. All constraints are the same except that
we do not use any Assign Resource Constraints since it is fine if no students are
assigned to the Event (The Prefer Resource constraints have to stay so that if a
student is assigned it must be one that chose the class). We will henceforth call
events of this type "maximum requirement events"

Note that it would be possible to combine the student requirement events into a
single event from a modeling perspective (using a separate Role for each student). We
decided against this approach in case that some existing solvers might enumerate all
combinations of resource assignments for each Event, which would lead to an expo-
nential amount of such combinations. In all other aspects the approaches are to the
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best of our knowledge equivalent, except that it would be possible to directly quantify
over 1 variables in the two new proposed constraint types. However, quantifying over
EventGroups instead of individual Events gives the advantage that we can use more
"high level" constraints, for example if we go back to the example provided in Listing 1
Biology_10, Physics_10 and Chemistry_10 could each be an EventGroup that represents
multiple courses (e.g. Biology_10_1, Biology_10_2 and Biology_10_3). We would then
add three more Student Choice Constraints (one for each subject) for ST_Bob each with
a Minimum set to 0 and Maximum set to 1. The result is that on the high level Bob will
visit between 1 and 3 of his selected choices and on the lower level he will be assigned
to exactly one course corresponding to the assigned subjects.

2.3 Class Size Balance

Sometimes one subject is taught in multiple courses handling exactly the same school
material because the number of students is too big for one single classroom and teacher.
One way to handle this using existing constraints is to simply use two teachers and
rooms for the class while also scaling the student requirements. However, this has the
restriction that both of those courses would need to happen in parallel, which takes away
some flexibility, especially when the student schedules are very individual.

A better alternative would be to have two completely separate courses. With the
help of Student Choice constraints, we can then model that a student can or must attend
one of them. However, this could result in the undesirable property of possibly very
unbalanced class sizes (e.g., two math classes, one with the bare minimum assignment
of 10 students while the other is fully booked with 30 students). To prevent this, we
introduce Balance Class Size constraints that, aside from the standard children that all
XHSTT constraints share (Id, Name, Required, Weight, CostFunction), have the tags
AppliesTo with the child EventGroups, Role and MaximumDifference. An example for
how this constraint would be modeled in the case of two equivalent math classes can be
found in Figure 2.

– AppliesTo: Each Event Group that is mentioned in the EventGroups child is relevant
for this constraint.

– MaximumDifference: An integer that sets a limit of how much difference between
the number of assigned resources can be between the Event Groups without causing
a deviation.

– Type: Optional child. If a Type is given only resources with this type are counted
towards the assigned resources of each event.

The deviation of this constraint is described as follows: For each Event Group
that is part of the EventGroups child, the deviation is calculated as the Maximum
Difference to the Event Group (part of the Event Groups Child) with either the most
or the least assigned resources (depending on which difference is higher) minus the
allowed MaximumDifference.
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1 < B a l a n c e C l a s s S i z e C o n s t r a i n t Id=" Ba l anceC la s sS i z e_Ma th_5a ">
2 <Name> Ba l anceC la s sS i z e_Ma th_5a < / Name>
3 <Requ i r ed > f a l s e < / Requ i r ed >
4 <Weight>1< / Weight>
5 < Co s t Fu nc t i o n > L i n e a r < / Co s t Fu nc t i o n >
6 <Appl i e sTo >
7 <EventGroups>
8 <EventGroup Re f e r ence =" Math_1_5A " / >
9 <EventGroup Re f e r ence =" Math_2_5A " / >

10 < / EventGroups>
11 < / Appl i e sTo >
12 <MaximumDifference>2< / MaximumDifference>
13 <Type> S t u d e n t < / Type>
14 < / B a l a n c e C l a s s S i z e C o n s t r a i n t >

Fig. 2: Balance Class Size Example

3 ILP Formulation

In this section we introduce an ILP model that can be used to solve an instance of our
extension to the High School Timetabling Problem. For this purpose we will extend the
formulation from Kristiansen et al. [5] by our two new constraints as well as the relevant
variables and linkings. In this section, we will only describe the new constraints. The
full ILP formulation can be found in the Appendix. Note that for the moment our new
instances and format only support linear and quadratic cost functions.

3.1 Sets

First, we introduce some sets of entities relevant to the extended modular XHSTT
problem which are the same as used by the model for the original problem [5].

C 2 ) ordered set of times (1)
C6 2 )⌧ set of time groups (2)
A 2 ' set of resources (3)
4 2 ⇢ set of events (4)
46 2 ⇢⌧ set of event groups (5)
4A 2 4 set of event resources of an event 4 (6)
B4 2 4 set of subevents of an event 4 (7)
2 2 ⇠ set of constraints (8)
? 2 2 points of application of constraint 2 (9)
3 2 ? deviations of a point of application ? (10)
8 2 � possible deviation values of deviations 3 (11)
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9 2 � possible deviation sum values at points ? (12)
)

start
B4,C

possible start times for se that occupy C (13)

3.2 Further Notation

Next, we need some further notation to express some of the constraints.

A⇡ dummy-resource with meaning no resource assigned (14)
C⇡ dummy-time with meaning no time assigned (15)
⇡4 duration of event 4 (16)
⇡B4 duration of subevent B4 (17)
4 2 2 constraint 2 applies to event 4 (18)
A 2 2 constraint 2 applies to resource A (19)
46 2 2 constraint 2 applies to event group 46 (20)
F2 weight of constraint 2 (21)
d(C) index of time C in ordered set ) (22)
%�4A is 1 if event resource 4A has a preassigned resource otherwise 0 (23)

⌫2 upper limit of constraint 2 (24)
⌫
2

lower limit of constraint 2 (25)

3.3 Variables

Compared to the formulation by Kristiansen et al. [5], we added the variables 1 and 2
which are required to model if a resource is participating in Events or Event Groups.

GB4,C ,4A ,A binary, indicates if B4 starts at C and A is assigned to 4A (26)
HB4,C binary, indicates that B4 starts at C (27)
EC ,A integer, indicates how often A is used at C by any B4 (28)
FB4,4A ,A binary, indicates if B4 is assigned A for 4A (29)
14,A binary, indicates if A is assigned to any B4 of 4 (30)
246,A binary, indicates if A is assigned to any 4 of 46 (31)
B2,?,3 integer, deviation 3 at point of application ? of 2 (32)
B2,?,3,8 binary, indicates that 3 has value 8 at ? of 2 (33)

D
SquareSum
2,?, 9

binary, indicates that the sum of deviations at ? is 9 (34)

DB4 binary, indicates whether B4 is active or not (35)
@A ,C binary, indicates if A is busy at C (36)
?A ,C6 binary, indicates if A is busy at some C in C6 (37)
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3.4 Functions

We also need to introduce some functions that will mainly be used to express the
objective value of the problem.

5 (B2,?,3) = F2 · CostFunction(B2,?,3) cost of constraint 2 (38)

⇠�
Sum =

’
?22,32?

B2,?,3 Sum cost function (39)

⇠�
SumSquare =

’
?22,32?,82�

8
2 · B2,?,3,8 SumSquare cost function (40)

⇠�
SquareSum =

’
?22, 92�

9
2 · DSquareSum

2,?, 9
SquareSum cost function (41)

Some constraints have an upper limit and a lower limit. In this case we define the
value of deviation + using the function*

⌫2 ,⌫2
+ as follows:

B � *
⌫2 ,⌫2

+ !
(
B � + � ⌫2
B � ⌫

2
�+

deviation with upper and lower limit (42)

3.5 Updated Objective Function

The objective function consists of the sum of all cost functions of individual constraints.
We can also split this objective function into separate values I⌘0A3 and IB> 5 C to denote
the costs of hard and soft constraints respectively. Compared to the objective function by
Kristiansen et al. [5], we simply extended the function by adding the terms describing
the deviation of our new constraint types.

min I = 5 (Bassignres
2,4A

) + 5 (Bassigntime
2,4A

) + 5 (Bspliteventamount
2,4

+ Bspliteventdur
2,4

)
+ 5 (Bdistsplitevent

2,4,4A
) + 5 (Bpreferres

2,4A
) + 5 (Bprefertime

2,4
) + 5 (Bavoidsplit

2,46
)

+ 5 (Bspreadevent
2,46,C6

) + 5 (Blinkevent
2,46,C

) + 5 (Bavoidclashes
2,A ,C

) + 5 (Bunavailabletimes
2,A

)

+ 5 (Bidletimes
2,A

) + 5 (Bclusterbusy
2,A

) + 5 (Blimitbusy
2,A ,C6

) + 5 (Blimitworkload
2,A

)
+ 5 (Bbalancesize

2,46
) + 5 (Bstudentchoice

2,A
)

(43)

3.6 Constraints

Added General Constraints

The model needs several linking constraints and other general constraints to make
the variables express the above-described properties. We will only describe those gen-
eral constraints that were added to the model of Kristiansen et al. [5] the remaining
constraints can be found in the Appendix.
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The following new constraints link variables FB4,4A ,A and our new variables 14,A :

FB4,4A ,A  14,A 84 2 ⇢ , B4 2 4, 4A 2 4, A 2 ' (44)’
B424

FB4,4A ,A � 14,A 84 2 ⇢ , 4A 2 4, A 2 ' (45)

To link our new variables 246,A to 14,A we need two more new constraints:

14,A  246,A 846 2 ⇢⌧, 4 2 46 (46)’
4246

14,A � 246,A 846 2 ⇢⌧ (47)

Balance Class Size Constraint

Applies to: Event Groups
Point-of-application: Event Group
We use the parameter ⌫2 to denote the maximum class size difference specified in
constraint 2 2 ⇠. The role parameter is optional and denotes that only resources of a
specific role in the event should be considered We use the variable <A2,46 to denote the
number of resources allocated to the specified Event Group

’
4246,4A24,

A24A ,C H ?4A=C H ?42\{A⇡ }

246,A = <A2,46 82 2 ⇠, 46 2 ⇠ (48)

<A2,46 � <A2,462 � ⌫2  Bbalancesize
2,46

82 2 ⇠, 46 2 2, 462 2 2, 46 < 462 (49)

<A2,462 � <A2,46 � ⌫2  Bbalancesize
2,46

82 2 ⇠, 46 2 2, 462 2 2, 46 < 462 (50)

Student Choice Constraint

Applies to: Resources
Point-of-application: Resource
We use parameters ⌫

2
and ⌫2 to denote the minimum and maximum values specified

in constraint 2 2 ⇠.

*
⌫2 ,⌫2

’
4622,4246,4A24,A24A ,A=A2

246,A  Bstudentchoice
2,A

82 2 ⇠, A2 2 2 (51)

3.7 Model Size Reductions

Using the model described above without any additions results in models that are too big
to handle on our computing cluster with 64 GB of RAM for most of the instances. For
that reason, we eliminated some variables that would never be used for an acceptable
solution. Our variable eliminations consist of the following list:
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– We eliminated all variables GB4,C ,4A ,A and FB4,4A ,A for students A that did not select
an Event 4, B4 2 4. This means that we do not permit solutions where students who
did not select an event are assigned to one of its subevents (which is supported by
practice).

– We only generate subevents with a feasible duration if there is a hard split events
constraint restricting the duration and/or amount of generated subevents. [3] This is
the same technique that was used by Fonseca et al. [2] to reduce model sizes.

4 Evaluation

4.1 Instances

As a first benchmarking set1, we chose 18 high schools with modular school systems
from 6 different federal states in Germany. Note that the secondary educational sys-
tems in Germany can vary greatly depending on the particular federal state [12], which
makes this set more diverse than instance groups from most other countries. The orig-
inal anonymized instances were provided by Untis GmbH2, an Austrian company that
specializes in software that assists schools with their various scheduling problems. We
implemented methods to automatically translate their format for encoding constraints
to the new extended XHSTT format, which enables us to provide many more instances
in the future (Untis collaborates with over 26,000 schools worldwide). However, it is
important to note that the XHSTT instances are not a one to one match semantically with
the original instances provided by Untis. This is due to the complex nature of the Untis
specification that uses a lot of empirical experience to evaluate timetables on factors that
can’t be represented in a standardized format. We still managed to achieve an extended
XHSTT formulation that matches the Untis formulation closely. Some statistics of the
instances can be found in Tables 1 and 2. Table 1 describes how many resources of
each resource type are used in each instance. Note that we do not include the mini-
mum/maximum requirement events in the event count since we categorize them as part
of the original event and they will always be scheduled together. However, we list the
number of requirement events as well as other quantifiable properties that describe the
modularity of each instance in Table 2. Note that the amount of requirement events
is equal to the number of student assignments that can (but don’t necessarily have to)
happen to modular events. Table 2 lists how many Student Choice and Balance Class
Size constraints each instance uses. The column Modular Events describes the cardi-
nality of the subset of events that have minimum and/or maximum requirement events
associated with them. However, there are many more factors that can have an impact on
how complex the resulting instance will be. One factor of complexity is the number and
type of constraints from the original XHSTT problem definition. Another factor that has
a significant impact is the size of the student pool that is feasible for each requirement
event. An instance will be much harder if it features some events where a high per-
centage of the total amount of students wants to participate in certain events. It is also
noteworthy that compared to most other benchmark instances of the original XHSTT

1https://github.com/IMC-UAS-Krems/modularXHSTT
2https://www.untis.at
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problem, this instance set is more restrictive on the possible times for events and the
available times for students and teachers. Specifically, there are constraints restricting
how many primary subjects a student can attend per day/in a row, how many lessons a
teacher may teach in a row without a break, minimum and maximum amounts of idle
times per week for teachers, global constraints that define a time-window when a lunch
break can/must happen for both students and teachers and hard restrictions that allow
no student idle times in the hours before lunch. We made sure to choose schools of
varying sizes and proportions of modular events so that it will be possible in the future
to find out where the complexities of the problem lie. We also plan to extend this set of
instances in the future with other modular schools from across Europe to cover more of
the possible instance space.

Table 1: Amount of resources present in each of the new instances (by resource type).

Instance Events Students Classes Teachers Rooms
GermanyRHPF1 1430 143 141 142 208
GermanyHAMB1 554 847 10 104 80
GermanyNRWE1 627 118 52 185 186
GermanyHAMB2 636 215 43 106 73
GermanyNRWE2 329 252 16 40 69
GermanyRHPF2 414 134 25 88 74
GermanyRHPF3 454 167 25 92 84
GermanyNRWE3 226 252 16 40 69
GermanyNRWE4 1045 331 112 185 310
GermanyRHPF4 545 894 0 83 106
GermanySAAR1 428 169 25 75 65
GermanyRHPF5 375 182 21 75 61
GermanyRHPF6 526 360 30 107 67
GermanyBAWU1 832 157 76 201 176
GermanyBAWU2 976 272 59 122 173
GermanyBAWU3 241 228 22 92 71
GermanyBAWU4 762 205 24 106 70
GermanyHESS1 705 181 49 177 225

4.2 ILP Evaluation

Based on the size of the new instances and the added complexity from the new constraints
we expect the new instances to be more difficult to solve than previous benchmark sets
for the XHSTT. Previous experiments [5] using ILP as an exact method have shown that
the problem is still too challenging for modern ILP solvers when using bigger instances.
Therefore, we expect to only produce weak upper bounds using the above-described
ILP model. Nevertheless, we find it important to provide first results for the newly
introduced problem, which should show whether the problem is trivial to solve or not.
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Table 2: Quantifyable properties describing the modularity of the new instances.

Instance Choice Constraints Balance Constraints Modular Events Requ. Events
GermanyRHPF1 2378 34 142 2440
GermanyHAMB1 911 42 46 970
GermanyNRWE1 1254 60 73 1265
GermanyHAMB2 2053 62 112 2206
GermanyNRWE2 2408 56 106 2893
GermanyRHPF2 1476 40 93 1385
GermanyRHPF3 1718 50 109 1892
GermanyNRWE3 1677 35 73 1942
GermanyNRWE4 3433 79 179 3828
GermanyRHPF4 3984 100 241 4063
GermanySAAR1 1421 57 81 1596
GermanyRHPF5 1904 41 124 2622
GermanyRHPF6 2567 21 131 3255
GermanyBAWU1 1452 45 76 1764
GermanyBAWU2 3743 84 176 4112
GermanyBAWU3 2473 75 162 2496
GermanyBAWU4 2309 61 160 2347
GermanyHESS1 2947 24 47 1189

While employing ILP as an exact method might not yield practical solutions directly,
past research suggests its potential when integrated into metaheuristic or matheuristic
approaches for tackling the High School Timetabling Problem [1,2].

Table 3 displays the outcomes of executing the 18 instances, with a Memory Limit set
at 64 GB, on an AMD EPYC 7252 processor utilizing the commercial ILP solver Gurobi
version 10.0.1. Each instance was allotted a time limit of 6 hours for computation. This
time frame notably exceeds the 1000-second constraint imposed during the ITC2011
competition. The objective value is split into two components of the form (hard, soft)
constraint deviations.

It’s worth noting that in practical scenarios, schools typically face fewer time con-
straints when devising their timetables. They are often willing to invest several hours, or
even days, in computational time without significant pressure. However, it’s crucial to
strike a balance between computational resources and research accessibility. Excessive
resource consumption could potentially limit accessibility to the problem, which runs
counter to the goal of fostering open research.

The experiment reveals the complexity inherent in the problem, suggesting that exact
methods may struggle to provide satisfactory solutions. Out of the 18 instances studied,
solutions were only found for 10.

Furthermore, the integral solutions obtained from the experiment did not meet the
criteria necessary for a viable school timetable. Despite leveraging Gurobi’s optimization
capabilities, the solutions fell short, underscoring the intricacies of the problem and the
limitations of current methodologies.
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Table 3: ILP results and statistics on 6-hour run.

Instance Variables Constraints Objective Value
GermanyRHPF1 9007909 67145239 —
GermanyHAMB1 22276651 61355937 —
GermanyNRWE1 5282717 22736030 (152422, 2330)
GermanyHAMB2 6268589 19983356 —
GermanyNRWE2 12183297 41285751 —
GermanyRHPF2 3013943 9066705 (125430, 4663)
GermanyRHPF3 6422201 21112371 (157904, 86000)
GermanyNRWE3 8581837 30750272 (75295, 206299)
GermanyNRWE4 23744735 88931169 —
GermanyRHPF4 42657262 87422983 —
GermanySAAR1 4695284 14566661 (142059, 23465)
GermanyRHPF5 5870336 14030401 (117175, 379454)
GermanyRHPF6 20876398 53277518 —
GermanyBAWU1 7567498 27892830 (231653, 70076)
GermanyBAWU2 11729612 31872156 (257726, 348709)
GermanyBAWU3 8464935 18952959 (81008, 3416)
GermanyBAWU4 7740808 19141384 (193313, 8665)
GermanyHESS1 5737775 29194865 —

Additionally, Gurobi’s inability to provide lower bounds within the designated time-
frame prevents us from assessing the optimality gap. However, there is potential for
progress as the schools that provided the instances have successfully created their own
timetables. In general it is not always possible to find feasible solutions for the re-
quirements encoded by schools. Untis deals with this problem by either leaving some
hours unscheduled or reporting the problems with the final timetable that will then be
manually resolved by the administrator, which then has to decide which hard constraints
can be softened. Nevertheless those solutions may enable us to establish tighter up-
per bounds in the future, enhancing our understanding of the problem and potentially
guiding optimization strategies.

5 Conclusion and Future Work

In this paper, we proposed an extension to the XHSTT format to address the constraints
that are present in the ever-growing number of modular high schools. We explained the
reasons that make those changes meaningful and how exactly they can be incorporated
into the XHSTT format. Furthermore, we provided 18 new real-world instances from
modular high schools of different regions in Germany together with an ILP model that
can be used to find feasible schedules. Our experiments showed that using our ILP model
as an exact method for finding solutions is not very effective, and even after 6 hours
of runtime, it could only find solutions that are nowhere near satisfactory. However,
based on the data from previous benchmarks those results were expected and should not
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discourage us from finding more efficient methods for creating timetables for modular
high schools. We believe that the real strength of the presented ILP will be revealed once
it is used as part of a heuristic approach like Large Neighborhood Search (LNS).

In future work, we want to use different exact methods, like a SAT solver to inspect
if the problem is really as hard as it seems to be or if ILP is simply not the right approach
for this problem. There has already been previous work into possible cuts for the original
ILP model and we plan to look into possible new cuts for our extension as well. It will
also be interesting to see how the various heuristics developed for the original High
School Timetabling Problem perform on this extension and if new heuristics can be
found that might work even better for this extension. Specifically, we want to look into
a more adaptive LNS-based approach to see if methods from Reinforcement Learning
can be used to improve the process of finding good schedules. We will support those
developments by providing more benchmark instances from all across Europe together
with a publicly available tool for validation. Finally, we will also compare future findings
with the timetables produced for actual schools to see if there is any gap between theory
and practice.

Acknowledgements A. Krystallidis and R. Ruiz-Torrubiano acknowledge financial
support from the Research Promotion Agency of Lower Austria (GFF) under project
grant FTI21-A-002.
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Appendix

Complete ILP Formulation

The variables, sets, functions and general further notation of the model can be found
in Section 3. Here we provide the full set of constraints used in the model (with some
repetition from Section 3 to avoid confusion), as well as some further additions to
guarantee exact objective values.

Constraints

General Constraints Link variables B2,?,3 and B2,?,3,8:’
82�

8 ⇤ B2,?,3,8 = B2,?,3 82 2 ⇠, ? 2 2, 3 2 2 (52)

Only one deviation indicator can be set per deviation:
’
82�

B2,?,3,8 = 1 82 2 ⇠, ? 2 2, 3 2 2 (53)

Link variables B2,?,3 and DSquareSum
2,?, 9

:
’
92�

9 ⇤ DSquareSum
2,?, 9

=
’
32?

B2,?,3 82 2 ⇠, ? 2 2 (54)

Only one deviation indicator can be set per point of application:
’
92�

D
SquareSum
2,?, 9

= 1 82 2 ⇠, ? 2 2 (55)

Link variables B2,?,3 and DStepSum
2

:

" · DStepSum
2

� B2,?,3 82 2 ⇠, ? 2 2, 3 2 ? (56)

A subevent is assigned exactly one starting time and the number of assigned resources
equals the number of event resources (|4A |B4):’
C2) ,A24A

GB4,C ,4A ,A = 1 8B4 2 (⇢ , 4A 2 B4 (57)

’
4A2B4,A24A

GB4,C ,4A ,A = |4A |B4 · HB4,C 8B4 2 (⇢ , C 2 ) (58)

Link variables EC ,A and FB4,4A ,A :’
B42(⇢ ,4A2B4,C 0 2)start

B4,C

GB4,C 0 ,4A ,A = EC ,A 8C 2 )\{C⇡}, A 2 ' (59)
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’
C2)

GB4,C ,4A ,A = FB4,4A ,A 8B4 2 (⇢ , 4A 2 B4, A 2 4A (60)

The following new constraints link variables FB4,4A ,A and our new variables 14,A :

FB4,4A ,A  14,A 84 2 ⇢ , B4 2 4, 4A 2 4, A 2 ' (61)’
B424

FB4,4A ,A � 14,A 84 2 ⇢ , 4A 2 4, A 2 ' (62)

To link our new variables 246,A to 14,A we need two more new constraints:

14,A  246,A 846 2 ⇢⌧, 4 2 46 (63)’
4246

14,A � 246,A 846 2 ⇢⌧ (64)

A subevent can not be assigned a start time that does not have enough times after it to
fit its duration:

HB4,C = 0 8B4 2 (⇢ , C 2 )\{C⇡}, d(C) + ⇡B4 � 1 > |) | (65)

Only a subset of the subevents are active at a time (since we create all possible subevents).
A subevent is considered active if it has a starting time or resource assigned:’
A24A\{A⇡ }

FB4,4A ,A  DB4 8B4 2 (⇢ , 4A 2 B4, %�4A = 0 (66)

’
C2)\{C⇡ }

HB4,C  DB4 8B4 2 (⇢ (67)

’
C2)\{C⇡ }

HB4,C +
’

A24A\{A⇡ },
4A2B4,%�4A=0

FB4,4A ,A � DB4 8B4 2 (⇢ (68)

The sum of the durations of the subevents of an event must equal the total duration of
the event:’
B424

⇡B4 ⇤ DB4 = ⇡4 84 2 ⇢ (69)

Linking the variables @A ,C and ?A ,C6 that indicate if a resource is busy:

|(⇢ | · @A ,C � EC ,A 8A 2 ', C 2 )\{C⇡} (70)
@A ,C  EC ,A 8A 2 ', C 2 )\{C⇡} (71)
?A ,C6 � @A ,C 8A 2 ', C6 2 )⌧, C 2 C6 (72)

?A ,C6 
’
C2C6

@A ,C 8A 2 ', C6 2 )⌧ (73)

(74)

Events that have a given start time must have that time assigned (B4⇤, represents an
arbitrarily chosen subevent that has the same duration as the event 4):

HB4⇤,4Time = 1 84 2 ⇢ , 4Time < #>=4, B4⇤Duration = 4Duration (75)
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Assign Resource Constraint

Applies to: Events
Point-of-application: Event resource

⇡4 �
’
B424,

A24A\{A⇡ }

⇡B4 · FB4,4A ,A = Bassignres
2,4A

82 2 ⇠, 4 2 2, 4A 2 4, A>;44A = A>;42 (76)

Assign Time Constraint

Applies to: Events
Point-of-application: Event

⇡4 �
’

C2)\{C⇡ },B424
⇡B4 · HB4,C = Bassigntime

2,4
82 2 ⇠, 4 2 2 (77)

Split Events Constraint

Applies to: Events
Point-of-application: Event
We use the parameters ⌫amount

2
and ⌫amount

2
to denote the minimum and maximum amount

of events respectively. Likewise, we use the parameters ⌫3DA
2

and ⌫3DA
2

to denote the
minimum and maximum duration of a subevent that is part of a given event, respectively.
The full deviation of a constraint 2 2 ⇠ is given by Bspliteventamount

2,4
+ Bspliteventdur

2,4

*
⌫

amount
2 ,⌫

amount
2

’
B424

DB4  Bspliteventamount
2,4

82 2 ⇠, 4 2 2 (78)
’

B424,⌫3DA2 >⇡B4 ,⌫
3DA
2 <⇡B4

DB4 = B
spliteventdur
2,4

82 2 ⇠, 4 2 2 (79)

Distribute Split Events Constraint

Applies to: Events
Point-of-application: Event
We use the parameters ⌫

2
and ⌫2 to denote the minimum and maximum number of

subevents respectively. ⇡2 denotes the duration for which the constraint applies.

*
⌫2 ,⌫2

’
B424,⇡B4=⇡2

DB4  Bdistsplitevent
2,4,4A

82 2 ⇠, 4 2 2 (80)

Prefer Resources Constraint

Applies to: Events
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Point-of-application: Event resource

’
B424,A82,
A2'\{A⇡ }

⇡B4 · FB4,4A ,A = Bpreferres
2,4A

82 2 ⇠, 4 2 2, 4A 2 4, %�4A = 0, A>;44A = A>;42

(81)

Prefer Times Constraint

Applies to: Events
Point-of-application: Event
If ⇡2 is given only sub-events of Duration ⇡2 are considered. Otherwise, all sub-events
are considered (⇡2 = ⇡B4 is removed from sum).

’
B424,C82,

C2)\{C⇡ },⇡2=⇡B4

⇡B4 · HB4,C = Bprefertime
2,4

82 2 ⇠, 4 2 2 (82)

Avoid Split Assignments Constraint

Applies to: Event Groups
Point-of-application: Event Group
We slightly simplify this constraint compared to the original formulation, since we can
make use of our new 2 variables.’
4A24,%�4A=0,
A>;42=A>;44A

FB4,4A ,A  :2,46,A 82 2 ⇠, A 2 ', 46 2 2, 4 2 46, B4 2 4 (83)

’
A2'

:2,46,A � 1  Bavoidsplit
2,46

82 2 ⇠, 46 2 2 (84)

Spread Events Constraint

Applies to: Event Groups
Point-of-application: Event Group
We use parameters ⌫

2,C6
and ⌫2,C6 to denote the minimum and maximum number of

sub-events of a given event that can be placed in time group C6 of a constraint 2 2 ⇠

*
⌫2,C6 ,⌫2,C6

’
B424246,C2C6

HB4,C  Bspreadevent
2,46,C6

82 2 ⇠, 46 2 2, C6 2 2 (85)

Link Events Constraint

Applies to: Event Groups
Point-of-application: Event Group
We define the binary variable >4,C that takes the value 1 if at least one sub-event of event
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4 is scheduled at time C, and 0 otherwise. We define the binary variable ;46,C that takes
the value 1 if at least one event in event group 46 is scheduled at time C, and 0 otherwise.

’
C
0 2)start

B4,C

HB4,C 0  >4,C 84 2 ⇢ , B4 2 4, C 2 )\{C⇡} (86)

’
B424,C 0 2)start

B4,C

HB4,C 0 � >4,C 84 2 ⇢ , C 2 )\{C⇡} (87)

;46,C � >4,C 846 2 ⇢⌧, 4 2 46, C 2 )\{C⇡} (88)

;46,C � >4,C  Blinkevent
2,46,C

82 2 ⇠, 46 2 2, 4 2 46, C 2 )\{C⇡} (89)

Order Events Constraint

Applies to: Pairs of Events
Point-of-application: Pair of Events
The variables ⌘first

4
and ⌘last

4
represent the first and last time assigned to any subevent of

event 4. We use parameters ⌫
2

and ⌫2 to denote the minimum and maximum number
of times to separate the pair of events (4, 40) which are specified in constraint 2 2 ⇠.

d(C) · HB4,C + ⇡B4  ⌘last
4

82 2 ⇠, 4 2 2, B4 2 4, C 2 ) (90)

|) | � ( |) | � d(C)) · HB4,C  ⌘first
4

82 2 ⇠, 4 2 2, B4 2 4, C 2 ) (91)

*
⌫2 ,⌫2

(⌘last
4
� ⌘first

4
0 )  Borderevent

2, (4,40 ) 82 2 ⇠, (4, 40) 2 2 (92)

Avoid Clashes Constraint

Applies to: Resources
Point-of-application: Resource

EC ,A � 1  Bavoidclashes
2,A ,C

82 2 ⇠, A 2 2, C 2 )\{C⇡} (93)

Avoid Unavailable Times Constraint

Applies to: Resources
Point-of-application: Resource

’
C22

@A ,C = Bunavailabletimes
2,A

82 2 ⇠, A 2 2 (94)

Limit Idle Times Constraint

Applies to: Resources
Point-of-application: Resource
We define the binary variables ⌘before

A ,C6,C
and ⌘after

A ,C6,C
to indicate if any events are happening
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before and after time C in the timegroup C6, respectively. We define the binary variables
⌘

timeslot
A ,C6,C

to indicate if time t is an idle time. We define the integer variable ⌘timegroup
A ,C6

to indicate the total amount of idle times in timegroup C6 We use |C6 | to indicate the
amount of times in a time group C6. We also use parameters ⌫

2
and ⌫2 to denote the

minimum and maximum values specified in constraint 2 2 ⇠.

@A ,C2  ⌘before
A ,C6,C1 8A 2 ⇠', C6 2 ⇠)⌧ , C1, C2 2 C6, d(C1) > d(C2)

(95)’
C22C6,d(C1 )>d(C2 )

@A ,C2 � ⌘before
A ,C6,C1 8A 2 ⇠', C6 2 ⇠)⌧ , C1 2 C6

(96)
@A ,C2  ⌘after

A ,C6,C1 8A 2 ⇠', C6 2 ⇠)⌧ , C1, C2 2 C6, d(C1) < d(C2)
(97)’

C22C6,d(C1 )<d(C2 )
@A ,C2 � ⌘after

A ,C6,C1 8A 2 ⇠', C6 2 ⇠)⌧ , C1 2 C6

(98)
⌘

before
A ,C6,C

� @A ,C + ⌘after
A ,C6,C

� 1  ⌘timeslot
A ,C6,C

8A 2 ⇠', C6 2 ⇠)⌧ , C 2 C6
(99)

� @A ,C + 1 � ⌘timeslot
A ,C6,C

8A 2 ⇠', C6 2 ⇠)⌧ , C 2 C6
(100)

⌘
before
A ,C6,C

� ⌘timeslot
A ,C6,C

8A 2 ⇠', C6 2 ⇠)⌧ , C 2 C6
(101)

⌘
after
A ,C6,C

� ⌘timeslot
A ,C6,C

8A 2 ⇠', C6 2 ⇠)⌧ , C 2 C6
(102)’

C2C6
⌘

timeslot
A ,C6,C

= ⌘timegroup
A ,C6

8A 2 ⇠', C6 2 ⇠)⌧

(103)

*
⌫2 ,⌫2

’
C622

⌘
timegroup
A ,C6

 Bidletimes
2,A

82 2 ⇠, A 2 2

(104)

Cluster Busy Times Constraint

Applies to: Resources
Point-of-application: Resource
We use parameters ⌫

2
and ⌫2 to denote the minimum and maximum values specified

in constraint 2 2 ⇠.

*
⌫2 ,⌫2

’
C622

?A ,C6  Bclusterbusy
2,A

82 2 ⇠, A 2 2 (105)
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Limit Busy Times Constraint

Applies to: Resources
Point-of-application: Resource
We use parameters ⌫

2
and ⌫2 to denote the minimum and maximum values specified

in constraint 2 2 ⇠.

� |C6 | · (1 � ?A ,C6) +*
⌫2 ,⌫2

’
C2C6

@A ,C  Blimitbusy
2,A ,C6

82 2 ⇠, A 2 2, C6 2 2 (106)

Limit Workload Constraint

Applies to: Resources
Point-of-application: Resource
The workload of a solution resource is given by F4,B4,4A = ⇡B4 ·!4A

⇡4
where !4A is an

integer denoting the workload of event resource er. We use parameters ⌫
2

and ⌫2 to
denote the minimum and maximum values specified in constraint 2 2 ⇠.

*
⌫2 ,⌫2

’
422,C2)\{C⇡ },B424,4A24

F4,B4,4A · GB4,C ,4A ,A  Blimitworkload
2,A

82 2 ⇠, A 2 2 (107)

Balance Class Size Constraint

Applies to: Event Groups
Point-of-application: Event Group
We use the parameter ⌫2 to denote the maximum class size difference specified in
constraint 2 2 ⇠. The role parameter is optional and denotes that only resources of a
specific role in the event should be considered We use the variable <A2,46 to denote the
number of resources allocated to the specified Event Group

’
4246,4A24,

A24A ,C H ?4A=C H ?42\{A⇡ }

246,A = <A2,46 82 2 ⇠, 46 2 ⇠ (108)

<A2,46 � <A2,462 � ⌫2  Bbalancesize
2,46

82 2 ⇠, 46 2 2, 462 2 2, 46 < 462 (109)

<A2,462 � <A2,46 � ⌫2  Bbalancesize
2,46

82 2 ⇠, 46 2 2, 462 2 2, 46 < 462 (110)

Student Choice Constraint

Applies to: Resources
Point-of-application: Resource
We use parameters ⌫

2
and ⌫2 to denote the minimum and maximum values specified

in constraint 2 2 ⇠.

*
⌫2 ,⌫2

’
4622,4246,4A24,A24A ,A=A2

246,A  Bstudentchoice
2,A

82 2 ⇠, A2 2 2 (111)
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Further Additions for guaranteeing exact objective values

Using the model as described above will result in valid/optimal schedules if the ILP
solver is run without a time limit. If there is a time limit the objective value provided by
the ILP solver might be bigger than the actual objective value of the produced schedule.
This is due to the formulation using the  operator in combination with the deviation
variables. So while it does lead to a worse objective value the ILP solver can save com-
putational time by setting the deviation variables higher than necessary. To mitigate this
issue for the constraints that feature an upper and lower bound we can add binary indi-
cators that tell the ILP solver which constraint to use based on the current assignments
(e.g. if the constraints have the form *

⌫2 ,⌫2
G  B) we set a binary variable 18=<0G = 1

if G > ⌫2 and a binary variable 18=<8= = 1 if G < ⌫
2
. We then use those indicators to

add the following constraints:

G � ⌫2 = B if 18=<0G (112)
⌫
2
� G = B if 18=<8= (113)

We proceed similarly for constraints of the form G1  B, G2  B, . . . , G=  B (where
G8 may represent an arbitrary linear expression). We can instead model them with the
following constraint:

max(G1, . . . , G=) = B (114)

Note that while we use so-called general constraints (indicator constraints, max con-
straints etc.) the ILP solver automatically transforms those into a set of linear constraints.
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