
Theoretical Lower Bounds for the
Oven Scheduling Problem

Francesca Da Ros1 [0000�0001�7026�4165] , Marie-Louise Lackner2 [0000�0002�9916�9011] ,
and Nysret Musliu2 [0000�0002�3992�8637]

1 DMIF, University of Udine, Italy francesca.daros@uniud.it
2 Christian Doppler Laboratory for Artificial Intelligence and Optimization for Planning and

Scheduling, Institute for Logic and Computation, TU Wien, Austria
{marie-louise.lackner, nysret.musliu}@tuwien.ac.at

Abstract. The Oven Scheduling Problem (OSP) is an NP-hard real-world parallel
batch scheduling problem arising in the semiconductor industry. The objective of
the problem is to schedule a set of jobs on ovens while minimizing several factors,
namely total oven runtime, job tardiness, and setup costs. At the same time, it
must adhere to various constraints such as oven eligibility and availability, job
release dates, setup times between batches, and oven capacity limitations. The
key to obtaining efficient schedules is to process compatible jobs simultaneously
in batches. In this paper, we develop theoretical, problem-specific lower bounds
for the OSP that can be computed very quickly. We thoroughly examine these
lower bounds, evaluating their quality and exploring their integration into existing
solution methods. Specifically, we investigate their contribution to exact methods
and a metaheuristic local search approach using simulated annealing. Moreover,
these problem-specific lower bounds enable us to assess the solution quality for
large instances for which exact methods often fail to provide tight lower bounds.

Keywords: Oven scheduling problem, Parallel batch scheduling, Lower bounds,
Exact methods, Simulated annealing

1 Introduction

The semiconductor manufacturing sector has been identified as one of the most energy-
intensive industries [17], particularly in the context of hardening electronic components
in specialized heat treatment ovens. To mitigate energy consumption, one strategy in-
volves grouping and processing compatible jobs together in batches to optimize resource
utilization. Such scheduling tasks that aim to increase efficiency by processing multiple
jobs simultaneously in batches are known as batch scheduling problems.

Over the last three decades, the scientific community has extensively investigated
batch scheduling problems, as witnessed by the surveys by [15,4]. A multitude of problem
variants, in the single or parallel machine setting, and each with distinct constraints
and objectives imposed by different industries [16,18] have been studied. One such
formulation, the Oven Scheduling Problem (OSP), was recently introduced by [10] and
is particularly pertinent to semiconductor manufacturing. The goal of this problem is
to efficiently schedule jobs on multiple ovens, aiming to minimize total oven runtime,

Proceedings of the 14th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2024

Theoretical Lower Bounds for the OSP 165

job tardiness, and setup costs simultaneously. In order to reach these goals, compatible
jobs are grouped and processed together in batches. Schedules must adhere to various
constraints, including oven eligibility and availability, job release dates, setup times
between batches, oven capacity limitations, and compatibility of job processing times.

The OSP was initially addressed using exact methods as well as a heuristic con-
struction method: [10] proposed two different modeling approaches, encompassing
Constraint Programming (CP) and Integer Linear Programming (ILP) model formu-
lations. The exact approaches successfully identified optimal solutions for 38 out of
80 benchmark instances. However, for larger instances, optimal solutions were rarely
obtained within a time-bound of one hour. In a later extended abstract, a metaheuristic
local search approach based on Simulated Annealing (SA) was suggested by [11]. This
approach showed promising results, as optimal solutions could often be reached quickly
and non-optimal solutions were improved for numerous instances.

In practical settings, it is most often desirable to obtain solutions of sufficiently good,
albeit not necessarily optimal, quality within a short time frame. However, assessing
the solution quality becomes challenging in the absence of a baseline, i.e., when exact
methods are not employed or do not deliver tight enough lower bounds on the objective
value. Providing problem-specific, efficiently computable lower bounds on the optimal
solution cost can thus be very helpful in assessing the quality of a solution. Moreover,
lower bounds can aid existing solution approaches and increase their performance: in
exact methods, they can be used to bound the range of variables, and in (meta-)heuristic
search methods, they can be included in stopping criteria. Theoretical, problem-specific
lower bounds have been developed for batch scheduling problems in the literature.
[1] proposed a SA approach in a parallel batch setting and presented a procedure for
calculating lower bounds on the makespan. Additionally, lower bounds on the makespan
and total completion time have been addressed by [7]. The maximum lateness has been
tackled by [13,6]. While these lower bounds have been proposed for different batching
problems, not all features of the OSP have been considered previously.

Process

Oven Scheduling Problem
(Parallel Batch Scheduling Problem)

(Lackner et al. 2023)

Theoretical Lower Bound (LB)

How to assess
solutions?

Greedy Algorithm
(Lackner et al. 2023)

Exact Methods
(Lackner et al. 2023)

Simulated Annealing (SA)
(Lackner et al. 2022)

Solution methods from the literature

Do LBs help
exact methods?

Can we use LB together
with UB to speed up

exact methods?

Do LBs speed
up SA?

How good are the
theretical LBs?

Fig. 1: Overview of the goals targeted by this work.

In this paper, we present an approach to computing lower bounds for the objectives of
the OSP, making use of the imposed machine eligibility and processing time constraints.
The goals of this paper are visualized in 1. Our primary contributions are as follows:

Proceedings of the 14th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2024

166 F. Da Ros et al.

– We introduce a procedure to compute theoretical lower bounds for the OSP, more
specifically for the number of batches and the total oven runtime. These lower bound
results can be adapted to tackle related (parallel) batch scheduling problems. Our
approach differs from the existing literature as it considers machine eligibility and
compatibility of processing times.

– We conduct a comprehensive evaluation of the tightness of our calculated lower
bounds on a benchmark set consisting of 120 instances with up to 500 jobs. This
evaluation encompasses the overall cost function and its individual components.
We differentiate between instances where an optimal solution is available and those
where it is not. Notably, for larger instances with 50 jobs or more, our calculated
lower bounds provide a small gap w.r.t. the optimal solution value and very often
outperform the lower bounds generated by commercial solvers (when the optimal
solution value is not known).

– We integrate the derived lower bounds into state-of-the-art solution approaches and
demonstrate that they can aid with solving the OSP. Our experiments explore to
what extent exact methods benefit from being provided with the calculated lower
bounds. Furthermore, we investigate whether lower bounds can speed up Local
Search (LS) algorithms, such as SA. Using a 1% gap between the SA solution and
the calculated lower bound as a stopping criterion, many of the benchmark instances
can be solved very fast (50 of the 120 benchmark instances are solved in roughly 15
seconds on average).

– To encourage future contributions and enhance the replicability of results, we pro-
vide a software toolbox that enables the generation of instances and the calculation
of lower bounds.

The remainder of this paper is structured as follows. 2 introduces the OSP. 3 elaborates
on the theoretical calculations of lower bounds for the OSP. 4 displays proposals on how
to integrate lower bounds in the solution methods. 5 details our experimental evaluation.
Eventually, 6 draws some conclusions and suggests future research directions.

2 The Oven Scheduling Problem

The OSP aims to group compatible jobs into batches and devise an optimal schedule for
these batches across a set of ovens. We report an abridged description of the problem
and forward the interested reader to the rigorous mathematical formulation proposed in
the original paper [10].

An instance of the OSP consists of a set M = {1, . . . , :} of ovens (also referred
to as machines) as well as a set A = {1, . . . , 0} of possible attributes (also known
as job families in the literature). Each machine < 2 M is associated with a maximal
processing capacity 2< and an initial state 80< 2 A. Each oven presents a set of
availability intervals [0B(<, 8), 04(<, 8)], where 0B(<, 8) (04(<, 8)) indicates the start
(end) of the 8-th interval.

A set J = {1, . . . , =} of jobs is given. Each job 9 2 J is described by an attribute
0 9 2 A, a size B 9 2 N, an earliest start time (or release date) 4C 9 2 N, and a latest end
time (or due date) ;C 9 2 N. The processing of a job is constrained by its minimal and
maximal processing times (<8=C 9 and <0GC 9 2 N, respectively). Additionally, jobs have

Proceedings of the 14th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2024

Theoretical Lower Bounds for the OSP 167

eligibility constraints, limiting their assignment to specific machines (indicated with the
set E 9 ✓M).

Setup times and costs are incurred between consecutive batches on the same machine
and depend upon the attributes of the batches (attributes of jobs in the batch). They are
indicated with two (0⇥0)-matrices of setup times BC = (BC (08 , 0 9))108 ,0 90 and of setup
costs B2 = (B2(08 , 0 9))108 ,0 90 are given to denote the setup times (costs) incurred
between a batch with attribute 08 and a subsequent one with attribute 0 9 .

The OSP aims to establish a feasible assignment of jobs to ovens, grouping them
into batches, and to determine the schedule of batches on the ovens. A feasible batch
construction and schedule must respect the following rules:

– Attribute homogeneity: Jobs in the same batch must share the attribute.
– Release date: A batch cannot start processing until the release date of the latest-

released job assigned to it.
– Processing time: The processing time of a batch must be longer than or equal to

the minimal processing time and shorter than or equal to the maximal processing
time of any job in the batch. Jobs in the same batch start and finish processing at
the same time and job-preemption is not allowed.

– Setup time: Batches on the same machine may not overlap, and setup times between
consecutive batches need to be respected.

– Machine eligibility: Jobs can only be assigned to one of their eligible machines.
– Machine availability: For every batch, the entire processing time and the preceding

setup time must be scheduled within a single availability interval.
– Machine capacity: The size of each batch cannot exceed the capacity of the machine

it is assigned to.
The objective of the OSP is threefold: to minimize the cumulative batch processing

time (?), the number of tardy jobs (C), and the cumulative setup costs (B2). Given a
solution to the OSP, the three objective components are formally defined as follows:

? =
’
<2M

’
12B<

%<,1, C =
���
9 2 J : ⇠ 9 > ;C 9

 �� and B2 =
’
<2M

’
12B<

B2<,1

where B< is the set of batches of machine < 2 M that composes the solution. The
processing time of batch 1 2 B< on machine < 2M is indicated with %<,1. The total
tardiness is calculated as the number of jobs 9 2 J for which the completion time ⇠ 9
is greater than their due date ;C 9 in the given solution. The setup cost of batch 1 on
machine< is denoted by B2<,1. Each component is then normalized and aggregated in a
weighted sum to account for different real-world scenarios. The weights used throughout
this paper are set as follows: F? = 4, FC = 100, and FB2 = 1 (these are also normalized
by their sum, see Use Case 1 by [10]). To illustrate the problem, 6 reports an example
instance for the OSP.

2.1 Solution methods for the OSP

In the literature, the OSP has been solved with a construction heuristic [10], exact
methods [10], and a SA algorithm [11] which we very briefly describe here.

Proceedings of the 14th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2024

168 F. Da Ros et al.

The construction heuristic introduced to solve the OSP [10] is a dispatching rule that
prioritizes jobs based on their release dates and then on their due dates. The algorithm
starts at time 0. At each time step, it compiles the list of currently available machines
and currently released jobs that have not yet been scheduled. The algorithm then selects
the job with the earliest due date from this pool and greedily assigns it to one of the
eligible machines. Once a job is scheduled, other available jobs are included in the same
batch, provided that the job’s attribute, processing time, and the machine’s capacity
allow it. If no job can be scheduled, the time is incremented by one, and the process is
repeated. This heuristic has been used to warm-start the exact methods with some of the
solvers [10] and as an initial solution for the SA approach [11].

Two exact modeling approaches which were formulated as CP and ILP models were
proposed by [10]. The first approach is based on batch positions: each job is assigned to
one of the possible batches, which are uniquely characterized by their machine and the
batch position on this machine. The constraints are formulated on the level of batches
and an optimal schedule of the batches needs to be found. The second uses a unique
representative job for each batch and seeks an optimal schedule for these jobs. These
two modeling approaches are implemented both in the high-level solver-independent
modeling language MiniZinc [22] and using interval variables in the Optimization
Programming Language (OPL) [5] used by CP Optimizer. Moreover, different state-of-
the-art solvers, search strategies, and a warm-start approach leveraging the construction
heuristic were employed. Ultimately, the best results were achieved with CP Optimizer
and the OPL-model using representative jobs as well as with Gurobi and the MiniZinc-
model with batch positions. In what follows, we will refer to these two solution methods
as “cpopt” and “mzn-gurobi” (as well as “cpopt-WS” and “mzn-gurobi-WS” for the
variants with warmstart).

A SA algorithm for the OSP was proposed by [11]. In this algorithm, a solution
to the OSP is represented by the assignments of jobs to ovens and by the processing
order of the jobs on their respective machines. The schedule of the batches on the ovens
is then deterministically constructed from this representation. The initial solution is
retrieved from the construction heuristic previously presented. The algorithm relies on
four neighborhood-moves: the Swap Consecutive Batches (SCB) move, which swaps
consecutive batches on the same machine; the Insert Batch (IB) move, which inserts a
given batch in a new position on the same machine; the Move Job to Existing Batch
(MJEB) move, which inserts a job 9 in an existing batch; the Move Job to New Batch
(MJNB) move, which inserts a job in a newly created batch. In the original work
by [11], SA was proposed with a preliminary manual tuning, whereas we fine-tuned its
parameters for this work.

3 Lower bounds on the optimal solution cost

In this section, we describe a procedure to calculate lower bounds on the optimal solution
cost for a given instance of the OSP. Our main focus lies in bounding the number of
batches required in any feasible solution. At the same time, we derive bounds on the
cumulative batch processing time. These lower bounds serve as a basis for deriving

Proceedings of the 14th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2024

Theoretical Lower Bounds for the OSP 169

lower bounds on the cumulative setup costs. Finally, we provide a brief discussion on
the number of tardy jobs.

3.1 Minimum number of batches required and minimal cumulative batch
processing time

Since jobs can only be combined in a batch if they share the same attribute, bounds
on the number of batches required are calculated independently for all attributes. For a
given attribute A 2 A, we denote by 1A the number of batches in a feasible solution and
by ?A the minimal cumulative processing time of batches.

Bound based on machine capacities and job sizes. Due to the capacity constraints of
machines, a simple bound on the number of batches required is

1A �
⇠ Õ

92J:0 9=A B 9

max
<2M{2<}

⇡
, (1)

as stated by [7]. This corresponds to the minimal number of batches required if we
assume that jobs can be split into smaller jobs of unit size and that all jobs can be
scheduled on the machine with the largest machine capacity.

This bound can be tightened by distinguishing between “large” and “small” jobs (in
a similar fashion as [1,12,13]). Large jobs are those jobs that are so large that they cannot
accommodate any other jobs in the same batch and thus need to be processed in a batch
of their own. All other jobs are referred to as small jobs. For a given attribute A , the sets
of large jobs �;

A
and small jobs �B

A
with attribute A are thus defined as follows:

�
;

A
=

⇢
9 2 J : 0 9 = A , B 9 + B8 > max

<2E 9
(2<) 88 2 J with 8 < 9 and 08 = A

�
,

�
B

A
=

�
9 2 J : 0 9 = A

\ �;

A

Instead of the bound in equation (1), we thus have the tighter bound:

1A � |�;
A
| +

⇠ Õ
92�BA B 9

max
<2M{2<}

⇡
. (2)

In the following, we refine these bounds from the literature by considering machine
eligibility and compatibility of processing times.

Refinement of the bound for small jobs based on machine eligibility. Considering
the small jobs of attribute A 2 A, we further distinguish them between those that can
be processed on several machines and those with a single eligible machine. Given a
machine 8 2M, we use the following notation:

1A ,8 =

Õ
92�BA :E 9={8} B 9

28

, and 20?8 = (d1A ,8e � 1A ,8) · 28

i.e., d1A ,8e is the minimal number of batches with small jobs that need to be processed
on machine 8 and 20?8 is the total remaining capacity in these batches.

To schedule the small jobs of attribute A , we proceed as follows:

Proceedings of the 14th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2024

170 F. Da Ros et al.

– All small jobs that need to be processed on a specific machine are scheduled on this
machine.

– The remaining small jobs are used to fill up the previously created batches.
– If there are still jobs left, we assume that they can be split into unit-size jobs and can

be scheduled on the machine with maximal capacity, creating 1⇤
A

additional batches.
The bound in equation (2) can then be tightened as follows:

1A � 1⇢A = |�;
A
| +

’
82M
d1A ,8e +

&
max (0,Õ

92�BA : | E 9 |>1 B 9 �
Õ
82M 20?8)

max
<2M{2<}

'

| {z }
=1⇤A

(3)

In order to calculate a lower bound on the cumulative batch processing time ?A of
these batches, note that all large jobs are processed in batches of their own which run
for their respective minimal processing times. Thus

?A =
’
92�;A

<8=C 9 + ?⇢A , (4)

where ?
⇢

A
denotes the minimal cumulative processing time of batches consisting of

small jobs with attribute A . A bound for ?⇢
A

can be calculated as follows:
– For every machine 8 with 1A ,8 > 0, create the collection of minimal processing times

of small jobs that need to be processed on 8; create the sum of the d1A ,8e smallest
elements from this collection.

– From the collection of minimal processing times of small jobs that can be processed
on multiple machines, create the sum of the 1⇤

A
smallest elements.

– Among all small jobs, pick the one with the largest minimal processing time. The
batch containing this job will necessarily have this job’s minimal processing time.
In the previous two sums, one can thus replace the overall largest processing time
with this value.

Alternative refinement of the bound for small jobs based on compatible job pro-
cessing times. Two jobs 8 and 9 with respective minimal and maximal processing times
<8=C8 ,<8=C 9 and <0GC8 ,<0GC 9 may only be combined in a batch if the intervals of their
processing times have a non-empty intersection:

[<8=C8 ,<0GC8] \ [<8=C 9 ,<0GC 9] < ;. (5)

This compatibility relation between jobs can be represented with the help of a compat-
ibility graph ⌧ = (+ , ⇢), where + is the set of all jobs I and (8, 9) 2 ⇢ if and only if
the jobs 8 and 9 have compatible processing times. In this graph, a batch forms a (not
necessarily maximal) clique. The problem of solving an OSP instance with unit-sized
jobs and a single machine with capacity 2 is thus equivalent to covering the nodes of the
compatibility graph with the smallest number of cliques with size no larger than 2.

This problem is NP-complete for arbitrary graphs, but solvable in polynomial time
for interval graphs. A simple greedy algorithm is provided by [3] and referred to as the
algorithm GAC (greedy algorithm with compatibility). By adapting the order in which

Proceedings of the 14th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2024

Theoretical Lower Bounds for the OSP 171

jobs are processed by the GAC algorithm, we obtain an algorithm that minimizes both
the number of batches and the cumulative batch processing time. We call this algorithm
GAC+.

Algorithm GAC+: Consider the jobs in non-increasing order 91, 92, . . . , 9= of their
minimal processing times <8=C 9 , breaking ties arbitrarily. Construct one batch per it-
eration until all jobs have been placed into batches. In iteration 8, open a new batch
⌫8 and label it with the first job 9

⇤ that has not yet been placed in a batch. Starting
with 9⇤ = [<8=C 9⇤ ,<0GC 9⇤], place into ⌫8 the first 2 not yet scheduled jobs 9 for which
<8=C 9⇤ 2 [<8=C 9 ,<0GC 9].

For a set J of jobs with arbitrary job sizes, let ⌧�⇠1(J , 2) denote the number
of batches returned by the GAC+ algorithm when replacing every job 9 2 J with
B 9 identical copies of unit size jobs. Similarly, let ⌧�⇠?(J , 2) denote the minimal
processing time returned by the GAC+ algorithm for this instance. With this notation,
we obtain the following bounds:

1A � |�;
A
| + 1⇠

A
, with 1⇠

A
= ⌧�⇠1(�B

A
, max
<2M

{2<}), (6)

?A �
’
92�;A

<8=C 9 + ?⇠A , with ?⇠
A
= ⌧�⇠?(�B

A
, max
<2M

{2<}). (7)

For a formal statement and proof of this result, see Section 6 of the appendix.

Overall bound on the number of batches and the minimal cumulative processing
time. Combining the previously established bounds, we obtain:

1 �
0’
A=1

(|�;
A
| + max(1⇢

A
, 1
⇠

A
)) and ? �

0’
A=1

(
’
92�;A

<8=C 9 + max(?⇢
A
, ?
⇠

A
)),

where 1⇢
A

is defined in equation (3) and 1⇠
A

in equation (6), the procedure to calculate
?
⇢

A
is described right after equation (4) and ?⇠

A
is defined in equation 7.

3.2 Bounds on the other components of the objective function

Setup costs. If we assume that the setup costs before batches of a given attribute are
always minimal, we obtain the following bound on the setup costs:

B2 �
0’
A=1

1A · min
B2{1,...,0}

{B2(B, A)}. (8)

A similar bound can be derived assuming that the setup costs after batches are always
minimal. For this case, we include initial setup costs for all machines to which batches are
scheduled and ignore the last batch on every machine. Since a prior it is not known which
machines are used in a schedule, we create the list setup_costs as follows. For every
attribute A , we add 1A copies of min

B2{1,...,0} {B2(A , B)} to setup_costs. Moreover, for

Proceedings of the 14th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2024

172 F. Da Ros et al.

every machine <, we add the element min
B2{1,...,0} {B2(80<, B)} to setup_costs. The

list is then sorted in non-decreasing order and the sum of the first 1 elements is taken:

B2 �
1’
8=1
setup_costs(8). (9)

Altogether, we have the following lower bound on the setup costs

B2 � max

0’
A=1

1A · min
B2{1,...,0}

{B2(B, A)},
1’
8=1
setup_costs(8)

!
. (10)

Note that it is impossible to obtain a lower bound on the setup costs by arranging
the minimum number of batches per attribute (as calculated previously) in an order that
minimizes the cumulative setup costs. Indeed, if the matrix of setup costs does not fulfill
the triangle inequality, it can be advantageous to introduce additional batches if the sole
objective is to reduce setup costs.

Number of tardy jobs. Regarding the number of tardy jobs, direct inference from the
instance itself may be limited. However, we can obtain a lower bound on the number
of tardy jobs by independently scheduling each job in a batch on its own on the first
available machine and computing the completion time. Any job finishing after its latest
end date is necessarily tardy in every solution.

4 Including lower bounds in solution methods

A recommended practice to build efficient exact models is to tightly restrict and bound
the domain of variables (as suggested, for instance, by the MiniZinc guide on efficient
modeling practices3). By employing tighter variable bounds, algorithmic efficiency
can be significantly enhanced, facilitating faster convergence to optimal solutions or
the identification of unfeasible regions. When solving the OSP with one of the exact
methods, the lower bounds derived in Section 3 can be calculated in a preprocessing
step and can then be provided to the model as part of the input data. The range of the
variables corresponding to the individual objective components as well as the variable
for the aggregated objective function can thus be bounded from below. Moreover, the
aggregated objective value of the solution delivered by the construction heuristic can be
used to bound the range of the objective function from above.

Problem-specific lower bounds can also have practical applications in metaheuristic
algorithms, e.g., in SA. Lower bounds can be used to guide the search, e.g., as part of the
termination criterion. This strategy allows for early interruption of the process, sparing
computational resources while still achieving satisfactory solution quality

5 Experimental evaluation

In this experimental evaluation, we aim to analyze the quality of the theoretically derived
lower bounds and their practical usefulness in helping to solve the OSP.

3see https://www.minizinc.org/doc-2.5.5/en/efficient.html

Proceedings of the 14th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2024

https://www.minizinc.org/doc-2.5.5/en/efficient.html

Theoretical Lower Bounds for the OSP 173

5.1 Benchmark instances

We consider the 80 benchmark instances by [9], which differ per number of jobs (10,
25, 50, or 100), number of machines (2 or 5), and number of attributes (2 or 5).

Moreover, we consider 40 new instances featuring a larger number of jobs (250 or
500) to reflect real-world scenarios better. This new set is generated using the specifica-
tions of the random instance generator provided by [8]. The instances can be retrieved
from the public public GitHub repository https://github.com/iolab-uniud/osp-ls/.

For tuning purposes (i.e., when using SA), we generate 25 additional instances with
similar characteristics as the initial benchmark set.

5.2 Experimental setup

We consider the following methods for the OSP:
– Problem-specific lower bounds (presented in 3): For the instances we consider, the

bounds are calculated in 2.9 seconds on average (with a standard deviation of 6.9
s).

– Construction heuristic (proposed by [10], see 2.1): Since the solution is determin-
istically constructed, there is no need to execute the algorithm more than once. For
the instance we consider, the solutions are retrieved in 0.2 seconds on average (with
a standard deviation of 0.4 s).

– Best performing exact methods (proposed by [10], see 2.1): We refer to the
methods as “cpopt” (interval variable model with representative jobs solved with
CP Optimizer) and “mzn-gurobi” (MiniZinc-model with batch positions solved
with Gurobi), as well as “cpopt-WS” and “mzn-gurobi-WS” for the variants with
warm-start. Each method is run with a timeout of 1 hour per instance.

– Local search approach with SA(proposed by [11], see 2.1): The algorithm is tuned
using automated parameter tuning with irace [14]. To account for the stochastic
components of SA, we execute the algorithm 10 times per instance with a timeout
of 6 minutes. Every 2 seconds we record the overall cost and the single objective
components of the best solution encountered so far.

Details regarding the implementation, the tuned parameters of the SA and the hardware
can be found in Section 6 of the appendix.

5.3 Lower bounds quality

Our objective is to assess the tightness of the calculated lower bounds. We examine the
bound on the overall cost (>1 9) as well as the bounds on its three components individually
(C, ?, and B2). For the smaller benchmark instances with up to 100 jobs and the aggregated
objection function, we refer to the best results per instance obtained by [10] with their
proposed exact methods. For the larger benchmark instances with 250 or 500 jobs, we
rerun the best-performing exact methods (“mzn-gurobi” and “mzn-gurobi-WS” as well
as “cpopt” and “cpopt-WS”) and retrieve the best result per instance. Moreover, we run
the exact models with the task of optimizing just one of the three components for the
entire benchmark set. In our analysis of the lower bounds, we differentiate between those

Proceedings of the 14th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2024

https://github.com/iolab-uniud/osp-ls/

174 F. Da Ros et al.

instances and objectives where an optimal solution cost is known and those where we
do not know the optimum.

For those instances and objectives where the optimum solution is known, given an
instance 8, we compute the relative gap(8) between the calculated lower bound 1(8) and
the optimal cost B(8); specifically gap(8) = 100 · (B(8) � 1(8))/B(8). Results show the
general tendency that the larger the instances, the smaller the gap (see 2). Concerning
the individual components, we observe that most room for improvement is left for the
simple bounds for B2 and C. Nonetheless, the gap for B2 is less than 25% for more than
half of the instances and the gap for C is less than 10% for 74% of the instances. For the
cumulative processing times, the gap is less than 25% for 88% of instances and less than
10% for 61%. The results are promising, as they give reason to hope that the bounds are
relatively tight for instances where the optimum is not known as well.

Whenever the optimal solution value is not known, we compare the problem-specific
lower bounds with the lower bounds retrieved by CP Optimizer and Gurobi (specifi-
cally, “cpopt”, “cpopt-WS”, “mzn-gurobi”, and “mzn-gurobi-WS”) and retrieve the best,
i.e., largest, lower bound found per instance. For each objective, we count how often
the calculated lower bounds are better, worse, or equal to the best dual bounds found by
the exact methods, see 1. The results show that both for the overall cost and its com-
ponents, the calculated problem-specific lower bounds are better than those provided
by any of the exact methods in the majority of the instances. The dominance of the
problem-specific lower bounds is particularly clear for the larger instances with 100 jobs
or more. Interestingly, this observation holds even for the objective components “setup
costs” (problem-specific bounds are better or equally good in 2/3 of the instances) and
“number of tardy jobs” (better or equally good results in 94 % of the instances) for which
the calculated bounds are very simple.

Moreover, we investigated the gap between the calculated lower bounds and the upper
bounds provided by the construction heuristic (see 2.1). For a total of 57 instances, this
gap is less than 10% (see 6 for details).

obj t p sc

n=
10

n=
25

n=
50

n=
10

0
n=

25
0

n=
50

0

n=
10

n=
25

n=
50

n=
10

0
n=

25
0

n=
50

0

n=
10

n=
25

n=
50

n=
10

0
n=

25
0

n=
50

0

n=
10

n=
25

n=
50

n=
10

0
n=

25
0

n=
50

0

0
25
50
75

100

0
25
50
75

100

0
25
50
75

100

0
25
50
75

100

G
AP

 [%
]

Fig. 2: Gap[%] between the known optimum and the calculated lower bounds.

Proceedings of the 14th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2024

Theoretical Lower Bounds for the OSP 175

Table 1: Comparison of the quality of calculated problem-specific (“calc.”) and best
solver lower bounds (“solv.”). We consider only those instances for which no optimal
solution is known. The label “calc.” refers to the number of instances where the calculated
bounds are better, “solv.” to those where the solver bounds are better and “equ.” to those
where the bounds are equal.

>1 9 C ? B2

calc. solv. equ. calc. solv. equ. calc. solv. equ. calc. solv. equ.
= # # # # # # # # # # # #

25 0 4 0 0 0 0 1 0 0 1 0 0
50 7 12 0 0 6 2 10 6 0 4 7 2
100 16 3 0 1 6 0 18 1 0 15 1 2
250 20 0 0 10 1 1 20 0 0 18 0 0
500 20 0 0 10 0 2 20 0 0 18 0 0

all 63 19 0 21 13 5 69 7 0 56 8 4

n=10
n=25
n=50

n=100
n=250
n=500

0 5 10 15 20
Instances [#]

g = 0% 0% < g ≤ 1% 1% < g ≤ 5% g > 5%

Fig. 3: Gap[%] between the best solution found and the best lower bounds.

5.4 Measuring solution quality

In this section, we use the lower bounds to assess the solution quality and benchmark
the best-known solutions for the OSP with the best lower bounds. On the one hand, we
consider the best solution found for each instance by the methods described in 2.1. On
the other hand, we consider the best lower bound per instance among the calculated
bounds and the ones retrieved by the exact methods. Then we calculate the relative gap
between the best solution and the best lower bound per instance. Results are shown in
3. Almost all small instances with 25 or 50 jobs could be solved optimally. For larger
instances, the solution methods find very good solutions (with a relative gap[%] 1%)
for roughly half the instances. For most of the remaining instances, the gap is larger
than 5%, showing that there is still room for improvement–both in terms of the solution
quality and in terms of the lower bound quality.

5.5 Application of lower bounds

Exact methods We aim to understand whether using the calculated problem-specific
lower bounds allows the exact methods to improve their results. As described in Sec-
tion 4, we perform experiments where the objective function and its components are
bounded from below by the calculated lower bounds. Moreover, we perform experiments

Proceedings of the 14th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2024

176 F. Da Ros et al.

additionally supplying the solvers with the upper bound on the objective obtained from
the greedy construction heuristic.

2 presents results categorized by methods and types of bounds included; it displays:
the number of instances for which the optimal solution, when known, was reached
(“optimal”); the number of instances for which a feasible solution was found (“solved”),
the number of instances for which the method could prove optimality (“proven opt”);
the number of instances for which the best solution was found (“best”); the number of
instances for which the best lower bound could be found (“best lower bound”); the average
run time (“avg rt”) and its standard deviation (“std rt”) in seconds. Note that for the
number of best solutions found and of best lower bounds found, the comparison is made
among a single solution method, i.e., comparing results obtained when no non-trivial
bounds are provided, when lower bound and when lower and upper bounds are provided.
The statistics regarding runtime are calculated for the subset of instances for which
the respective solution method could prove optimality when it was not provided with
bounds (meaning that instances for which the time-out was reached are not included).
The majority of solution methods, namely “mzn-gurobi”, “cpopt” and “cpopt-WS”,
demonstrate greatly improved performance and solution quality when lower bounds are
incorporated. For “mzn-gurobi-WS”4, the contribution of the bounds is less clear: fewer
instances are solved (optimally), but better solutions and better lower bounds can be
found. The inclusion of upper bounds is not always advantageous for the exact methods,
meaning that the solvers were not capable of finding a solution that was at least as
good as the greedy solution within a time limit of 1 hour. For all analyzed solution
methods, the presence of bounds facilitates the discovery of improved lower bounds by
the commercial solvers, thus contributing to closing the optimality gap.

Table 2: Comparison of the results obtained with exact methods with and without the
inclusion of bounds. Best results per solution method and performance parameter are
highlighted in bold font. Numbers in brackets indicate the improvement obtained by
supplying the respective solution methods with bounds.

solution bounds incl. optimal solved proven opt best best LB avg rt std rt
method in model # # # # # (in s) (in s)

mzn-gurobi none 40 64 31 51 41 429.5 860.6
LB 41 (+1) 78 (+14) 36 (+5) 62 (+11) 62 (+21) 189.9 387.6
LB + UB 40 (+0) 73 (+9) 35 (+4) 64 (+13) 55 (+14) 235.8 542.0

mzn-gurobi none 41 89 34 57 40 764.3 1217.9
-WS LB 40 (-1) 87 (-2) 34 (+0) 68 (+11) 65 (+25) 505.4 1069.8

LB + UB 41 (+0) 84 (-5) 34 (+0) 65 (+8) 70 (+30) 493.9 1083.2

cpopt none 39 114 28 73 28 18.4 34.1
LB 40 (+1) 114 (+0) 33 (+5) 79 (+6) 118 (+90) 17.8 46.4
LB + UB 39 (+0) 85 (-29) 33 (+5) 57 (-16) 110 (+82) 17.9 43.1

cpopt-WS none 38 120 28 70 28 17.6 30.0
LB 40 (+2) 120 (+0) 33 (+5) 81 (+11) 118 (+90) 15.9 31.7
LB + UB 40 (+2) 120 (+0) 33 (+5) 83 (+13) 117 (+89) 19.9 42.9

4The warm-start data provided to Gurobi only contains values for a subset of the decision
variables. The solver thus needs to complete the partial solution and, for “mzn-gurobi-WS’, fails
to do so for many large instances.

Proceedings of the 14th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2024

Theoretical Lower Bounds for the OSP 177

3 offers a comprehensive comparison of overall best results. The inclusion of bounds
enabled the methods to deliver three new optimality proofs and to find 23 better solutions.
Additionally, the computational time reduces when bounds are utilized compared to
when they are not.

Table 3: Overall comparison of the best results per instance achieved with exact methods
without the inclusion of bounds and with the inclusion of bounds.

bounds optimal solved proven opt best best lower bound avg rt std rt
included # # # # # (in s) (in s)

no 41 120 38 76 42 486.8 1075.6
yes 41 (+0) 120 (+0) 41 (+3) 99 (+23) 116 (+74) 107.6 256.9

Local search Lower bounds provide a means to assess whether it is feasible to halt
the search before reaching the termination criterion – in our case, the timeout. We aim
to discern under which circumstances this is viable and how much time is necessary.
Considering the overall cost, for 50 out of 120 instances, the gap[%] is lower than 1%
(average time required 15.52 ± 39.85 s); for 60, the gap[%] is lower than 5% (average
time required 3.86 ± 20.21 s), and for 67, it is lower than 10% (average time required
11.13 ± 34.92 s). This means that for roughly half of the benchmark instances, the search
could be terminated early, delivering a solution of good quality. It is worth pointing out
that this is merit also of a demonstrably good initial solution (see 6). 4 reports the
distribution of minimum time required by SA to achieve such results.

GAP ≤ 1% GAP ≤ 5% GAP ≤ 10%

n=
10

n=
25

n=
50

n=
10

0

n=
25

0

n=
50

0

n=
10

n=
25

n=
50

n=
10

0

n=
25

0

n=
50

0

n=
10

n=
25

n=
50

n=
10

0

n=
25

0

n=
50

0

0

50

100

150

0

40

80

120

0

50

100

150

tim
e

[s
]

Fig. 4: Minimum time required by SA to reach a given gap[%] w.r.t. >1 9 .

6 Conclusion

In this study, we introduced a procedure for calculating theoretical lower bounds for the
OSP which can be calculated within a couple of seconds even for large instances. The

Proceedings of the 14th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2024

178 F. Da Ros et al.

experimental evaluation demonstrated their quality and practical utility when incorpo-
rated into exact methods or LS approaches. Our bounds can help to find better solutions,
to deliver more optimality proofs, and to find high-quality solutions in a shorter time.

Notably, some of the bounds we developed are relatively simple, in particular those
concerning job tardiness. This suggests that there is potential for further enhancements
by refining these lower bounds with more sophisticated methods. Therefore, future
extensions will focus on improving the presented bounds. Additionally, we aim to explore
adaptive local search techniques, wherein neighborhood probabilities dynamically adjust
based on the proximity to the lower bounds. Moreover, investigating alternative use cases,
such as employing different weight sets on the objective function, may offer valuable
insights.

Replicability The software toolbox can be retrieved from the public GitHub repository
https://github.com/marielouiselackner/OvenSchedulingCLI, and the new benchmark
instances are available at https://github.com/iolab-uniud/osp-ls/.

Acknowledgments The financial support by the Austrian Federal Ministry of Labour
and Economy, the National Foundation for Research, Technology and Development and
the Christian Doppler Research Association, and SPECIES is gratefully acknowledged.

Proceedings of the 14th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2024

https://github.com/marielouiselackner/OvenSchedulingCLI
https://github.com/iolab-uniud/osp-ls/

Theoretical Lower Bounds for the OSP 179

Appendix A – Example of an OSP Instance.

To better exemplify the problem, let us consider the following randomly created instance
consisting of 10 jobs (= = 10), 2 machines (: = 2), and 2 attributes (0 = 2). It presents
the following characteristics:

< "1 "2
2< 18 20
80< 1 2
[0B, 04] [21,250] [103,259]

BC =
✓

0 0
3 8

◆
B2 =

✓
6 8
10 10

◆

9 1 2 3 4 5 6 7 8 9 10
E 9 "1 "1 "1 "1 "1 "1 "1

"2 "2 "2 "2 "2 "2 "2 "2
4C 9 2 3 8 1 39 41 40 31 27 16
;C 9 16 20 43 24 55 64 56 89 58 27
<8=C 9 11 10 19 19 10 19 11 50 19 11
<0GC 9 11 50 19 19 50 50 50 50 19 50
B 9 18 16 17 2 6 19 11 11 4 14
0 9 2 2 2 1 2 2 2 2 1 1

5 reports a possible solution to such an instance in the form of a Gantt Chart. The
running time of the oven is ? = 158, the number of tardy jobs is C = 8, and the setup costs
amount to B2 = 72. This solution is optimal when setting the weights in the objective
function as F? = 4, FC = 100, and FB2 = 1.

0 50 100 150 200 250

M1

M2

Scheduling Horizon

6 9,10 3

44 5,7 8 1 2unavail. unavail.

unavail. unavail.

Fig. 5: Gantt chart of a solution of the OSP for an instance with 10 jobs. The label
of each bar represents the jobs processed in the batch. Unavailabilities (“unavail.”) are
reported in gray. Batches with attribute 1 are colored in green, whereas those referring
to attribute 2 are colored in magenta.

Appendix B – Formal statement and proof of the correctness of the
GAC-bounds described in Section 3.1

In the following, we formulate the bounds described in the Section entitled Alternative
refinement of the bound for small jobs based on compatible job processing times (starting
on page 170) more formally and prove the correctness of the algorithm GAC+.

First, let us recall the compatibility requirement expressed in equation (5). Two
jobs 8 and 9 with respective minimal and maximal processing times <8=C8 ,<8=C 9 and
<0GC8 ,<0GC 9 may only be combined in a batch if the intervals of their processing times
have a non-empty intersection:

[<8=C8 ,<0GC8] \ [<8=C 9 ,<0GC 9] < ;.

Proceedings of the 14th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2024

180 F. Da Ros et al.

Now let us consider the following special case of the OSP:

OSP*: Given a set of jobs I of unit size defined by their minimal and maximal
processing times, i.e. 9 = [<8=C 9 ,<0GC 9] for all 9 2 I, and a single machine
with capacity 2 2 N, how many batches do we need at least in order to process
all jobs if jobs can only be processed in the same batch if the compatibility
condition (5) is fulfilled?

Several variants of this problem have been studied in the literature, e.g. by Finke et
al. [3]; the variant that we are interested in corresponds to the problem (P2) there.
Solving the problem OSP* will allow us to obtain lower bounds for the OSP: Indeed,
as in equation (1), we obtain lower bounds on the number of batches required and their
processing times if we assume that jobs can be split into smaller jobs of unit size and
that all jobs can be scheduled on the machine with largest machine capacity.

As stated in 3, equation (5) between jobs can be represented with the help of a
compatibility graph ⌧ = (+ , ⇢), where + is the set of all jobs I and (8, 9) 2 ⇢ if
and only if the jobs 8 and 9 have compatible processing times. In this graph, a batch
forms a (not necessarily maximal) clique. The problem of solving an OSP instance with
unit-sized jobs and a single machine with capacity 2 is thus equivalent to covering the
nodes of the compatibility graph with the smallest number of cliques with size no larger
than 2.

A simple greedy algorithm to solve this problem is provided by [3] and referred to
as the algorithm GAC (greedy algorithm with compatibility). By adapting the order in
which jobs are processed by the GAC algorithm, we obtain an algorithm that minimizes
both the number of batches and the cumulative batch processing time. We call this
algorithm GAC+.

Algorithm GAC+. Consider the set of jobs I in non-increasing order 91, 92, . . . , 9=
of their minimal processing times <8=C 9 , breaking ties arbitrarily. Construct one batch
per iteration until all jobs have been placed into batches. In iteration 8, open a new batch
⌫8 and label it with the first job 9

⇤ that has not yet been placed in a batch. Starting
with 9⇤ = [<8=C 9⇤ ,<0GC 9⇤], place into ⌫8 the first 2 not yet scheduled jobs 9 for which
<8=C 9⇤ 2 [<8=C 9 ,<0GC 9] (or all of them if there are fewer than 2).

For a set I of unit size jobs and a maximum batch size 2 2 N, we denote by
⌧�⇠1(I, 2) the number of batches returned by the GAC+ algorithm above. Similarly,
let ⌧�⇠?(I, 2) denote the minimal processing time returned by the GAC+ algorithm
for this instance.

Theorem 1. For any given set of unit size jobs I and for any given constant 2 2 N,
Algorithm GAC+ solves the problem OSP*, i.e., ⌧�⇠1(I, 2) is the minimum number
of batches required under the condition that a batch may not contain more than 2 jobs.
Moreover, the cumulative batch processing time ⌧�⇠?(I, 2) is minimal.

By slight abuse of notation, for a set J of jobs with arbitrary job sizes, let
⌧�⇠1(J , 2) denote the number of batches returned by the GAC+ algorithm when
replacing every job 9 2 J with B 9 identical copies of unit size jobs. Similarly, let
⌧�⇠?(J , 2) denote the minimal processing time returned by the GAC+ algorithm for
this instance. With this notation, Theorem 1 yields the bounds reported in (7).

Proceedings of the 14th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2024

Theoretical Lower Bounds for the OSP 181

Proof (of Theorem 1). We follow the proof of Theorem 4 in [3], extending it to include
the minimization of the cumulative batch processing time and adapting it to our variant
of the algorithm. The proof is by induction over the number of jobs and the induction
start with a single job is trivial.

Let us start with a simple observation about the minimum number of batches and
the minimal batch processing time. For this, let 1(I, 2) denote the minimum number of
batches required to schedule all jobs inI under the condition that a batch may not contain
more than 2 jobs. Similarly, let ?(I, 2) denote the minimal cumulative batch processing
time in any schedule of all jobs in I. Then these two functions are monotonous in I,
i.e.:

1(I, 2) � 1(I \ { 9}, 2)
and ?(I, 2) � ?(I \ { 9}, 2), for every 9 2 I.

(11)

For the induction step, letB = (⌫1, ⌫2, . . . , ⌫1) be a sequence of batches constructed
by the algorithm GAC+ for I, ⌫1 being the first batch constructed by the algorithm and
? 2 N being the cumulative batch processing time of B. Let the label of ⌫1 be the job
8 = [<8=C8 ,<0GC8], i.e., <8=C8 is maximal among the minimal processing times and the
processing time of ⌫1 is equal to<8=C8 . For the set of jobsI\⌫1, the algorithm constructs
the batch sequence ⌫2, . . . , ⌫1 (see the definition of GAC+). By the induction hypothesis
we know that ⌫2, . . . , ⌫1 is optimal for I \ ⌫1, i.e., 1(I \ ⌫1, 2) = |B| � 1 = 1 � 1 and
?(I \ ⌫1, 2) = ? � <8=C8 . It thus suffices to show that there exists a batch sequence of
minimal length and with minimal batch processing time that contains the batch ⌫1.

Let $1 be the batch containing 8 in an optimal sequence of batches O and let us
choose O such that the size of the intersection |$1 \ ⌫1 | is maximal. We will prove that
$1 = ⌫1.

First note that 8 2 $1 implies that <8=C8 2 [<8=C 9 ,<0GC 9] for all jobs 9 2 $1:
<8=C 9 <8=C8 since <8=C8 is maximal and <8=C8 <0GC 9 since every job 9 2 $1 needs
to be compatible with 8. Thus the processing time of batch $1 is equal to <8=C8 .

We now distinguish two cases: |⌫1 | < 2 and |⌫1 | = 2, where 2 is the maximum batch
size. If |⌫1 | < 2, the batch ⌫1 contains all neighbors of 8 in the compatibility graph
⌧ corresponding to the set of jobs I. Since $1 is a clique containing 8, it follows that
$1 ✓ ⌫1. Then by monotonicity (as stated in equation (11)), we have

|B| � 1 = 1(I \ ⌫1, 2) 1(I \$1, 2) = |O| � 1
and ? � <8=C1 = ?(I \ ⌫1, 2) ?(I \$1, 2) = ?(I, 2) � <8=C8 ,

which proves that B is optimal both in terms of the number of batches and in terms of
the cumulative processing time.

For the case |⌫1 | = 2, we assume towards a contradiction that there exists a job
9 = [<8=C 9 ,<0GC 9] 2 ⌫1 \ $1. This implies that there must also exist a job : =
[<8=C: ,<0GC:] 2 $1\⌫1. (As before,$1 ⇢ ⌫1 would imply thatB is optimal. However,
the job 9 could have been added to$1 without having an impact on the number of batches
or the batch processing time required by O. This however is a contradiction to the choice
of O). From the definition of the algorithm, we know that ⌫1 consists of the first 2 jobs
containing <8=C8 . Therefore, 9 < : and <8=C 9 � <8=C: . Moreover, as noted earlier, we
know that <8=C8 2 : = [<8=C: ,<0GC:] and thus [<8=C 9 ,<8=C8] ✓ : .

Proceedings of the 14th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2024

182 F. Da Ros et al.

We then define $01 B ($1 \ {:}) [{ 9} and redefine the batch $ 2 O that contains
9 as $0 B ($ \ { 9}) [{:}. Both these batches fulfill the compatibility constraint for
the processing times: $01 does because <8=C8 is contained in 9 and in all jobs in $1
and $0 does because all jobs that are compatible with 9 are also compatible with : (If
job B is compatible with 9 , this means that B = [<8=CB ,<0GCB] \ [<8=C 9 ,<8=C8] < ;,
since <8=C8 is maximal among all minimal processing times. On the other hand, we
already noted that [<8=C 9 ,<8=C8] ✓ : and thus B \ : < ;, which means that B and : are
compatible.) As for the processing times of the batches, both batches$1 and$01 have the
processing time <8=C8 as they contain job 8. For the batch $0, we have replaced the job 8
with a job with smaller or equal processing time (<8=C8 � <8=C:). Thus the processing
time of batch $0 is smaller or equal to the batch processing time of $. We have thus
produced another optimal sequence of batches O0 = O \ {$1,$} [{$01,$0}. However,
|$01 \ ⌫1 | > |$1 \ ⌫1 | which is in contradiction to the choice of O. This finishes the
proof. ut

Appendix C – Detailed example for the calculation of lower bounds

We consider the example instance described in 6 to exemplify the calculation of the
problem-specific lower bounds on the objective function as derived in Section 3.

The values of the lower bounds for the number of batches required and the cumulative
batch processing times are summarized in Table 4 on page 183. We explain their
calculation in what follows. The sets of large jobs are �;1 = ; and �;2 = {1, 2, 3, 6},
we thus need 4 batches for the large jobs of attribute 2 and none for attribute 1. The
processing times for large batches are given by the minimal processing times of the large
jobs and contribute 11 + 10 + 19 + 19 = 59 to the cumulative batch processing time.

For the processing time of small jobs, we exemplify the calculation of the bound
based on eligible machines for attribute 1 and the one of the bound based on compatible
processing times for attribute 2. For attribute 1, we have three small jobs (4, 9, and
10) of which job 4 can only be processed on machine 1 and job 9 only on machine 2.
Two different batches are thus required for these jobs. Since the cumulative remaining
machine capacity (2 · max{2<} � (B4 + B9) = 40 � (2 + 4) = 34) is sufficient to
accommodate job 10 with B10 = 14, these two batches suffice. In this case, the runtime
of the two batches is given by the minimal runtime of the two jobs 4 and 9, and is equal
to 38 in total. As for attribute 2, the small jobs are 5, 7, and 8. Their respective intervals
of possible processing times are [10, 50], [11, 50] and [50, 50]. To follow algorithm
GAC+, we sort the list of jobs in decreasing order of their minimal processing times:
(8, 7, 5). A first batch with a processing time of 50 is created for job 8. The remaining
capacity in this batch is 20 � 11 = 9 (assuming that it is assigned to the batch with
maximal capacity). We thus proceed in the list of jobs and add 9 of the 11 units of job 7
to this batch. For the remaining 2 units of job 7, a new batch with processing time 11 is
created. We can add the entire job 5 to this batch. In total, two batches with a cumulative
processing time of 61 are needed for the small jobs of attribute 2.

For the calculation of setup costs, equation (8) gives:

B2 � 11 · min
B

{B2(B, 1)} + 12 · min
B

{B2(B, 2)}

Proceedings of the 14th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2024

Theoretical Lower Bounds for the OSP 183

= 2 · min(6, 10) + 6 · min(8, 10) = 60.

For equation (9), the list of minimal setup costs setup_costs contains minB{B2(1, B)} =
min(6, 8) three times (twice for attribute 1 and once for the initial state of machine 1)
and minB{B2(2, B)} = min(10, 10) seven times (six times for attribute 2 and once for
the initial state of machine 2). We take the 1 = 8 smallest values from this list and thus
have:

B2 �
8’
8=1
setup_costs(8) = 3 · 6 + 5 · 10 = 68.

We take the maximum of these two values and obtain that B2 � 68 for this instance.
Due to the given machine availability intervals for this instance, all jobs except jobs

5, 7, and 8 always finish late. Thus, the number of tardy jobs is � 7 in any feasible
solution.

The theoretical lower bound values are reported in Table 4.

Table 4: Lower bounds and optimal values for the number of batches, cumulative batch
processing time, setup costs, and tardiness for the example instance with 10 jobs.

number of batches batch processing time setup costs tardiness
(1) 1⇢A (3) 1⇠A (6) large jobs ?⇢A ?

⇠
A (7) (8) (9)

attribute 1 6 2 1 0 38 19 60 68 3 (jobs 4, 9, 10)
attribute 2 6 6 59 60 61 4 (jobs 1, 2, 3, 6)
lower bound 8 158 68 7
optimal values 8 158 72 8
gap (in %) 0 0 5.5 12.5

Using the weights and aggregating the lower bounds for three components of the
objective function, we obtain that:

obj � 4 · 158/18 + 68/10 + 100 · 7
10 · 105

⇡ 0.7066.

Considering the optimal solution for this instance presented in 6, the gap between
the calculated lower bounds and the optimal solution (C = 8, ? = 158, and B2 = 72) are
thus 0% for the runtime, 5.5% for the setup costs, and 12.5% for the number of tardy
jobs; the gap for the aggregated objective function is 11.7% (due to the high weight
given to tardy jobs).

Appendix D – Details concerning the experimental setup

We consider the theoretical lower bounds as presented in 3. The code is implemented
in C#. The experiments are executed on a machine featuring an Intel Core i7-1185G7
processor with 3.00GHz. Each run is executed on a single thread.

We consider the construction heuristic proposed by [10] (see 2.1). The solution
method is implemented in C++. The code is compiled with Clang++15. All experiments

Proceedings of the 14th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2024

184 F. Da Ros et al.

are executed on a machine featuring 2x Intel Xeon Platinum 8368 2.4GHz 38C, 8x64GB
RDIMM. Each run is executed on a single thread.

We consider the exact methods proposed by [10] (see 2.1). The “cpopt” is imple-
mented with CPLEX Studio 22.11, whereas “mzn-gurobi” uses Minizinc 2.8.2 Gurobi
10.0.1. All experiments are executed on a machine featuring 2x Intel Xeon CPU E5-2650
v4 (12 cores @ 2.20GHz, no hyperthreading).

We consider the SA proposed by [11] (see 2.1). The SA is implemented using
EasyLocal++, a C++ framework for LS algorithms [2]. The code is compiled with
Clang++15. All experiments are executed on a machine featuring 2x Intel Xeon Platinum
8368 2.4GHz 38C, 8x64GB RDIMM. Each algorithm is executed on a single thread. The
algorithm is tuned using irace (v.3) [14]. We assign irace a total budget of 25, 500
experiments. Details on the parameter ranges and their final values are reported in 5.

Table 5: Parameter configurations for the SA algorithm.
Param. Description Range Value

)
5

Final temperature. 0.001 – 0.01 0.004
U Cooling rate. 0.985 – 0.995 0.988
d Accepted move ratio. 0.05 – 0.7 0.309

?SCB Prob. of SCB move. 0 – 1 0.090
?IB Prob. of IB move. 0 – 1 0.293
?MJEB Prob. of MJEB move. 0 – 1 0.328
?MJNB Prob. of MJNB move. 0 – 1 0.289

Appendix E – Evaluation of the upper bounds provided by the
construction heuristic

It is important to note that if the construction heuristic successfully schedules all jobs,
as is the case for all our benchmark instances, the resulting solution is always feasible,
making the obtained solution cost an upper bound on the optimal solution cost.

We compute the relative bound gap between the calculated lower bound and the
cost of the solution generated by the greedy construction heuristic for each benchmark
instance (considering the overall cost). The results are shown in Figure 6. The construc-
tion heuristic hardly ever finds optimal solutions (it does so for a single out of the 120
benchmark instances) and often the gap is very large between this upper bound and the
calculated lower bound (the relative gap is nearly equal to 100% for a few instances).
Surprisingly however, for 37 instances across all sizes, the relative bound gap is less
than 1%, even for some of the large instances where no solver could provably find an
optimal solution. Moreover, for a total of 57 instances, the gap is less than 10%. This
suggests that within a short computation time (a maximum of 6 seconds, an average of
0.2 seconds), the construction heuristic together with the problem-specific lower bounds
can provide good estimates of the optimal solution cost for a significant portion of the
instance set, and rough estimates for nearly half of the instances.

Proceedings of the 14th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2024

Theoretical Lower Bounds for the OSP 185

0

25

50

75

100

n=
10

n=
25

n=
50

n=
10

0

n=
25

0

n=
50

0

G
AP

 [%
]

Fig. 6: Relative bound gap[%] between the upper bound found by the construction
heuristic and the calculated lower bound per instance considering the overall cost.

References

1. Damodaran, P., Vélez-Gallego, M.C.: A simulated annealing algorithm to minimize makespan
of parallel batch processing machines with unequal job ready times. Expert systems with
Applications 39(1), 1451–1458 (2012)

2. Di Gaspero, L., Schaerf, A.: E���L����++: An object-oriented framework for flexible design
of local search algorithms. Software — Practice & Experience 33(8), 733–765 (July 2003)

3. Finke, G., Jost, V., Queyranne, M., Sebő, A.: Batch processing with interval graph compati-
bilities between tasks. Discrete Applied Mathematics 156(5), 556–568 (2008)

4. Fowler, J.W., Mönch, L.: A survey of scheduling with parallel batch (p-batch) processing.
European Journal of Operational Research 298(1), 1–24 (Apr 2022)

5. Hentenryck, P.V.: Constraint and integer programming in OPL. INFORMS Journal on Com-
puting 14(4), 345–372 (2002)

6. Kedad-Sidhoum, S., Solis, Y.R., Sourd, F.: Lower bounds for the earliness–tardiness schedul-
ing problem on parallel machines with distinct due dates. European Journal of Operational
Research 189(3), 1305–1316 (2008)

7. Koh, S.G., Koo, P.H., Kim, D.C., Hur, W.S.: Scheduling a single batch processing machine
with arbitrary job sizes and incompatible job families. International Journal of Production
Economics 98(1), 81–96 (2005)

8. Lackner, M.L., Mrkvicka, C., Musliu, N., Walkiewicz, D., Winter, F.: Minimizing Cumulative
Batch Processing Time for an Industrial Oven Scheduling Problem. In: Michel, L.D. (ed.)
27th International Conference on Principles and Practice of Constraint Programming (CP
2021). Leibniz International Proceedings in Informatics (LIPIcs), vol. 210, pp. 37:1–37:18.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2021)

9. Lackner, M.L., Mrkvicka, C., Musliu, N., Walkiewicz, D., Winter, F.: Benchmark instances
and models for the Oven Scheduling Problem [Data Set] (Dec 2022). https://doi.org/10.528
1/zenodo.7456938

10. Lackner, M.L., Mrkvicka, C., Musliu, N., Walkiewicz, D., Winter, F.: Exact methods for the
oven scheduling problem. Constraints 28(2), 320–361 (2023)

11. Lackner, M.L., Musliu, N., Winter, F.: Solving an industrial oven scheduling problem with a
simulated annealing approach. In: Proceedings of the 13th International Conference on the
Practice and Theory of Automated Timetabling. pp. 115–120 (2022)

12. Li, X., Chen, H., Du, B., Tan, Q.: Heuristics to schedule uniform parallel batch processing
machines with dynamic job arrivals. International Journal of Computer Integrated Manufac-
turing 26(5), 474–486 (2013)

Proceedings of the 14th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2024

https://doi.org/10.5281/zenodo.7456938
https://doi.org/10.5281/zenodo.7456938
https://doi.org/10.5281/zenodo.7456938
https://doi.org/10.5281/zenodo.7456938

186 F. Da Ros et al.

13. Li, X., Li, Y., Huang, Y.: Heuristics and lower bound for minimizing maximum lateness on a
batch processing machine with incompatible job families. Computers & Operations Research
106, 91–101 (Jun 2019)

14. López-Ibáñez, M., Dubois-Lacoste, J., Pérez Cáceres, L., Birattari, M., Stützle, T.: The
irace package: Iterated racing for automatic algorithm configuration. Operations Research
Perspectives 3, 43–58 (2016)

15. Mathirajan, M., Sivakumar, A.I.: A literature review, classification and simple meta-analysis
on scheduling of batch processors in semiconductor. The International Journal of Advanced
Manufacturing Technology 29(9-10), 990–1001 (2006)

16. Tang, T.Y., Beck, J.C.: Cp and hybrid models for two-stage batching and scheduling. In:
Hebrard, E., Musliu, N. (eds.) Integration of Constraint Programming, Artificial Intelligence,
and Operations Research. pp. 431–446. Springer International Publishing, Cham (2020)

17. Wang, Q., Huang, N., Chen, Z., Chen, X., Cai, H., Wu, Y.: Environmental data and facts in the
semiconductor manufacturing industry: An unexpected high water and energy consumption
situation. Water Cycle 4, 47–54 (2023)

18. Zhao, Z., Liu, S., Zhou, M., Guo, X., Qi, L.: Decomposition method for new single-machine
scheduling problems from steel production systems. IEEE Transactions on Automation Sci-
ence and Engineering 17(3), 1376–1387 (2020)

Proceedings of the 14th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2024

