
Exact Methods for the Time Frame Rostering Problem
in the Context of Tram Driver Scheduling

Lukas Frühwirth and Nysret Musliu

Christian Doppler Laboratory for Artificial Intelligence and Optimization for Planning and
Scheduling, DBAI, TU Wien, Favoritenstraße 9, 1040 Vienna, Austria

Abstract. Creating more robust rosters that offer medium-term planning security
for employees is a desired goal in the public transportation sector. To tackle this
problem, we introduce a new approach in the context of tram driver scheduling
called time frame rostering. In this approach, instead of directly assigning shifts
to roster positions, time frames are first allocated to roster positions. These time
frames are intervals wide enough to accommodate a variety of shifts. The shift
assignment takes place only a few days before the actual workday. Thus, time frame
rosters provide medium-term planning security, as tram drivers are only assigned
shifts within their designated time frames. The goal of the time frame rostering
problem is then to optimally assign time frames to a roster such that several
constraints are met. In this paper, we formally define the time frame rostering
problem and provide a solver-independent model of the problem. Furthermore, we
compare two state-of-the-art solvers on real-world instances and demonstrate that
optimal or almost optimal solutions can be found in a reasonable amount of time.
Additionally, we verify these solutions by simulating absences and subsequent
shift assignment.

Keywords: Tram Driver Scheduling, Crew Rostering, Public Transport Schedul-
ing,

1 Introduction

Similar to other professions that operate in shifts, such as those in the medical field or
industrial manufacturing, the shifts of tram drivers are assigned to a rotating schedule
called a roster. Traditionally, this roster was created by assigning shifts to specific roster
positions either by hand or by using workforce scheduling algorithms [8]. However,
this approach proved inconvenient for tram drivers as well as rostering managers. A
roster is typically scheduled weeks or months in advance, hence it undergoes several
changes until the final shift assignment due to changes in shift plans, fluctuations in
staff headcount, and various other factors. Consequently, the literature covers methods
for constructing more robust rosters [6], [16], such as calculating the optimal amount of
reserve shifts [18], [9], as well as re-rostering methods [17]. These methods, however,
might still be inconvenient for tram drivers, as they potentially require a substantial
number of reserve shifts or the repeated reallocation of shifts, which deteriorates the
medium-term planning security for tram drivers.

As a consequence thereof, the idea emerged to introduce a time frame roster. In
this approach, instead of directly assigning shifts to specific roster positions, first, time

Proceedings of the 14th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2024

188 L. Frühwirth, N. Musliu

frames are assigned to roster positions. These time frames are intervals wide enough
to accommodate a variety of shifts. The final shift assignment takes place only a few
days before the actual workday. At this stage, shifts replace the drivers’ time frames
where the shifts’ intervals fit within the time frames’ intervals. Thus, the time frame
roster provides medium-term planning security for tram drivers, as drivers will only be
assigned shifts within their designated time frames.

However, to the best of our knowledge, the existing literature does not provide a
formal definition or a formulated model of the time frame rostering problem that we
consider in this paper. Furthermore, an efficient method for optimally assigning time
frames to roster positions while considering specific criteria is currently unavailable. A
main criterion is, for example, that even if drivers are absent, it must still be possible to
assign shifts to drivers without violating their time frames.

The time frame rostering problem is a real-life combinatorial optimization problem
with specific requirements tailored to the operation of tram networks. The design of the
time frames requires a negotiation process and agreement between the employer and
employees. Therefore, for the purpose of this paper, the time frames and their specifica-
tions (start time, end time, type) are regarded as predetermined.

The main contributions of this paper are:

– We provide a formal problem definition and formulate a solver-independent model
of the time frame rostering problem.

– We publish real-world instances based on data provided by a public transportation
company.

– We empirically evaluate different exact solving methods using these real-world
instances and show that these are optimally solvable within 120 minutes.

– We demonstrate the feasibility of our solutions by simulating staff absences and
subsequent shift assignment.

This paper is part of a master’s thesis [5] that is currently under submission and is
expected to be published by September 2024.

The article is structured as follows: In the next section, we provide an overview of the
related work, followed by a high-level problem description in section 3. In section 4, we
precisely define the time frame rostering problem, and formulate a solver-independent
model. Subsequently, in section 5, we evaluate the model by solving real-world instances
using the linear solver Gurobi [7] and the constraint solver OR-Tools [14]. Finally, we
draw our conclusions in section 6.

2 Related Work

Tram driver scheduling can be considered a subset of crew scheduling, where each crew
consists of just a single member, the tram driver. The time frame rostering problem is
then a subset of the challenges encountered in crew planning or, generally, in workforce
scheduling. To the best of our knowledge, the time frame rostering problem defined in
this paper has not been addressed in the existing literature.

Proceedings of the 14th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2024

The Time Frame Rostering Problem 189

Crew planning for (public) transportation typically comprises two primary stages: the
first stage involves crew scheduling, also known as shift design or shift/duty scheduling,
where shifts are designed based on a predetermined timetable. The second stage, referred
to as crew rostering, entails assigning these shifts to typically rotating or cyclical rosters
[8].

These two stages are also integral components of many workforce scheduling ap-
proaches in general [11]. While the two stages are often treated as separate optimization
problems [8], integrated approaches in crew planning with a single objective function
exist [1], [12]. On a more general level, solving the general employee scheduling prob-
lem, as demonstrated by Kletzander and Musliu [10], is also done by integrating several
stages.

Extensive literature explores how crew scheduling [8], crew rostering [8], and work-
force scheduling problems in general [2,4,15], can be addressed using mathematical pro-
gramming, constraint programming, answer-set programming, heuristics, metaheuris-
tics, and combinations thereof. In shift scheduling, mathematical programming is the
most popular approach [15]. Mathematical programming typically uses a set covering
formulation, introduced by Dantzig in 1954 [3]. Our model of the time frame rostering
problem is also based on such a formulation.

As mentioned in the introduction, a crew schedule, and particularly a crew roster,
undergoes several re-rosterings due to factors such as timetable changes, construction
sites, fluctuations in headcount, absences, and more. Thus, the literature also covers
methods to deal with uncertainty by constructing more robust rosters [6], [16], such
as introducing reserve duties [9], determining the optimal amount of reserve shifts
[18], as well as re-rostering methods [17]. However, the methodology of introducing
time frames and initially assigning these frames to rotating rosters based on the crew
schedule (shifts), followed by assigning shifts within these time frames, has not been
proposed to date. This time frame roster is more robust to changes than a typical shift
roster, as the shift assignment occurs at a later stage where many factors leading to
re-rostering are already known and accounted for in the assignment process.

3 Problem Description

This section provides a high-level problem description using a small sample roster. First,
we outline a conventional rostering process that resembles a real-world implementation
in a public transportation company. Second, we detail how our methodology diverges
from this traditional approach, highlighting the differences and innovations we introduce.

Conventional Approach Typically, tram driver scheduling begins with a set of shifts
containing all shifts for a week. Based on the size of this set, the demand for drivers and
their days off is calculated. A roster containing only the days off is created. Each driver
has either two specific consecutive days off or follows a rotational day off schedule,
resulting in eight different day off types. Tram drivers are assigned to different roster
weeks within their day off type and rotate through the roster weeks of their own type in
ascending order. Upon reaching the last week of their day off type they continue with
the first week of their type.

Proceedings of the 14th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2024

190 L. Frühwirth, N. Musliu

After the creation of the day off schedule, the shifts are allocated. In the exemplary
shift roster shown in Table 1, each shift B represents a unique shift from the set that
contains all shifts for a week. Each shift includes specific details about the work location
(tram line), work hours (start time, breaks, end time), and whether it is a split shift
(with a several-hours-long break) or not. Since the size of the day off schedule is de-
termined by accounting for absences, among other things, there are considerably more
roster positions than shifts. These empty roster positions are filled with reserve shifts,
denoted as either A4 or A; in Table 1. Reserve shifts provide drivers with rough time
windows, typically distinguishing only between an early time window A4 (only shifts
starting before noon are allowed) and a late time window A; (only shifts starting after
noon are allowed). Drivers with reserve shifts receive notice of their actual shift or if
they are on stand-by only a few days before their scheduled workday.

day off type Mo Tu We Th Fr Sa Su
>0 off s s s s s off
>0 ... s s s s s ...
>1 off off s s s s s
>1 r r r r r
>2 s off off s s s s
>2 s s s s s
>3 r r off off s s s
>3 s s r r r
>4 s s s off off s s
>4 s s s s s
>5 s s s s off off s
>5 s s s s s
>6 s s s s s off off
>6 r r r r r
>7 off off s s s s s
>7 s off off r r r r

Table 1: Exemplary Shift Roster

day off type Mo Tu We Th Fr Sa Su
>0 off 8 7 6 5 5 off
>0 ... 13 15 4 2 1 ...
>1 off off 8 7 6 5 11
>1 12 14 3 2 1
>2 2 off off 8 8 7 6
>2 5 11 15 4 3
>3 1 1 off off 10 8 7
>3 5 15 4 3 2
>4 3 2 1 off off 9 8
>4 7 6 11 13 11
>5 14 2 2 1 off off 8
>5 7 5 11 15 4
>6 12 14 3 2 1 off off
>6 8 6 6 5 15
>7 off off 13 12 3 2 2
>7 1 off off 4 3 3 2

Table 2: Exemplary Time Frame Roster

New Approach – Time Frame Rostering The issue arising from the traditional ap-
proach is that drivers with reserve shifts do not know in advance when they will have to
work. Moreover, absences of tram drivers and changes in the shift plans might require
a reallocation of shifts. Our proposed method to prevent reserve shifts and reallocation
is to introduce a time frame roster. In a time frame roster, rather than directly assigning
shifts, we initially allocate time frames to roster positions (see Table 2).

In the time frame roster above, each time frame is indicated by a number between 1
and 15 since we consider 15 different time frames. Time frames are essentially intervals
with predefined start and end times. The shift assignment is postponed until a few days
before the actual workday, by which time many absences are already known to the roster
managers. Shifts are assigned to time frames so that they fit within the intervals of the

Proceedings of the 14th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2024

The Time Frame Rostering Problem 191

frames and are of the correct type. Some time frames allow for, or even require, split
shifts, while others cannot accommodate split shifts.

The objective of the time frame rostering problem is to optimally assign time frames
to roster positions so that shift assignment at a later stage remains possible. This re-
quirement can be broken down into three major constraints:

Firstly, tram drivers may be absent with a certain probability, resulting in two
scenarios. On the one hand, at the time of shift assignment, there might be more time
frames (i.e., drivers) than shifts. In this case, it must be possible to assign all shifts to
time frames; hence, it cannot be the case that shifts remain unassigned because they do
not fit within the time frames. On the other hand, if there are fewer time frames than
shifts, then all time frames must be assigned a shift, and it cannot be the case that there
are time frames left in which none of the remaining shifts fits. The remaining shifts are
then covered by drivers working overtime.

Secondly, to adhere to rest period regulations, two consecutive time frames cannot
appear in the list of forbidden sequences.

Thirdly, there are restrictions on split shifts during a workweek. We provide a formal
definition of the problem and its constraints in the next section.

4 Formal Problem Definition and Model

To formally define the time frame rostering problem, we first need to specify the given
data. Secondly, we explain what constitutes a time frame roster, and the role it plays in
tram driver scheduling. Thirdly, we will outline how to create a day off schedule. Finally,
we will define the hard constraints, soft constraints, decision variables, and the objective
function.

4.1 Provided Data

The provided data comprises four groups: shift-related, time frame-related, day off-
related and constraint-related. This section specifies each of them.

Proceedings of the 14th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2024

192 L. Frühwirth, N. Musliu

1. Shift data:
– There is a set of = shifts denoted by (= {B1, ..., B=}. Each shift has a start and

end time denoted as an interval [0B8 , 1B8], 8 2 {1, ..., =}.
– The weekday of a shift is represented by FB8 , ranging from 0 to 6.
– (8 represents the set of shifts for weekday 8:
B 2 (8 , FB = 8, 8 2 {0, ..., 6}

– Each shift has an assigned shift type CB8 , with the value of 1 if the shift is a split
shift and 0 otherwise.

2. Time frame data:
– There is a set of < time frames indicated by � = {1, ...,<}, each with a start

and end time forming an interval [28 , 38], 8 2 {1, ...,<}.
– Each time frame has an assigned type C8 , with 0 allowing only shifts of type 0,

1 allowing only shifts of type 1, and 2 allowing shifts of any type.
3. Day off data:

– There are 8 different day off types >0, ..., >7. Types 0 to 6 have two fixed
consecutive days off, while type 7 follows a 16-week-long rotating day off
schedule, which is provided by a public transport company.

4. Constraint data:
– A list B4@ 5 1 of forbidden time frame sequences.
– A list B4@D3 of undesirable time frame sequences and their penalties.
– A list 5 >A1FC of forbidden times frames for each workweek type FC. This

workweek type is used to encode, on one hand, the proximity of a workday to
the next day off, and on the other hand, whether a roster position is designated
for early or late shifts.

4.2 Definition of a Time Frame Roster

A time frame roster ' possesses the following properties:

– The size of the roster is determined by the sum of the sizes of each day off type.
Thus, a roster ' consists of |' | = Õ7

8=0 |>8 | roster weeks.
– Each roster week A

>
9
8

has an assigned day off type >8 at week 9 and consists of 7
days.

– A roster position A
>
9
8 ,:

is then defined as a specific weekday : within the roster week
A
>
9
8
.

– Each roster position, excluding those designated as days off, will be assigned a time
frame.

– Each roster position A
>
9
8 ,:

features a workweek type FC, ranging from -1 to 30.
– '8 represents a list of time frames assigned to roster ' for weekday 8.

Operating Principle of the Roster Each driver is associated with a specific day off
type >8 and a unique roster week A

>
9
8
. Tram drivers rotate through the roster weeks of

their own day off type in ascending order. Upon reaching the last week of their day off
type > |>8 |

8
, they continue with the first week of their day off type >1

9
. However, there

might be more roster weeks than drivers, since the number of weeks assigned to each

Proceedings of the 14th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2024

The Time Frame Rostering Problem 193

day off type has to be even. This is the case because drivers alternate between "early"
and "late" weeks. During the early week, their shifts typically start before 10am, while
in the late week, their shifts begin after 10am. Due to this alternating schedule, an even
number of roster weeks is necessary for each day off type.

Time frame rosters are anonymous, i.e., the specific assignment of drivers to roster
weeks is not given, putting the focus solely on constructing the roster itself. To com-
prehend the rotational principle of the roster, it is crucial to define what constitutes two
consecutive positions in the roster.

Definition of Consecutive Roster Positions Given the roster positions

A
>
:
8 ,<

, A
>
;
8 ,=
2 '

then A
>
:
8 ,<

is immediately followed by A
>
;
8 ,=

iff one of the following statement holds:

– Two consecutive days in the same roster week: : = ;, = = < + 1.
– Sunday in one week (but not the last week of a day off type) followed by Monday in

the next week: ; = : + 1, < = 6, = = 0.
– Sunday in the last week of a day off type followed by Monday in the first week of

the same day off type: : = |>8 |, ; = 1, < = 6, = = 0.

4.3 Algorithm for Calculating the Minimum Number of Drivers Needed

We propose the min_demand algorithm to calculate the required number of drivers for a
certain number of shifts given the drivers’ absence probability. The algorithm starts with
a lower bound (e.g., number of shifts) and increases the demand until the lower bound
is covered with a probability of ?BD2, i.e., until the binomial cumulative distribution
function returns a probability greater than ?BD2:

1 min_demand (p_abs , p_suc , l b) :
2 I f (l b = 0)
3 minDemand = 0
4 E l s e
5 minDemand = l b
6 While (binom . cd f (minDemand−lb , minDemand , p_abs) <= p_suc

)
7 minDemand = minDemand + 1
8 Re tu rn minDemand

This is the binomial cumulative distribution function used in the min_demand algorithm:

binom.cdf (: , =, ?) = %(- :) =
:’
8=0

✓
=

8

◆
?
8 (1 � ?)=�8

Given a number of = trials, the probability ? of a trial being successful and a number of
: successes, the binomial cumulative distribution function returns the probability that
there are : or fewer successes.

Proceedings of the 14th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2024

194 L. Frühwirth, N. Musliu

The min_demand algorithm will be used in several constraints, so we want to clarify
its meaning by providing an example. Assume that drivers are absent with a probability
of 10% (?01B = 0.1). Let’s also assume that we have 10 shifts and aim to cover 9 of
them (2>E 5 02 = 0.9, ;1 = 9) with a probability of 99% (?BD2 = 0.99). The question is
then: How many drivers do we need to ensure that at least 9 drivers show up to work
99% of the time?

To determine this number, we use the function call: min_demand(0.1, 0.99, 9). In the
first iteration, the function binom.cdf (0,9,0.1) is called and returns the likelihood that
from 9 drivers, 0 or fewer are absent given the absence probability of 10%. This value
is 0.38742, which is smaller than the required 0.99, so the while loop continues. The
loop stops with the call binom.cdf (4,13,0.1), where the binomial cumulative distribution
function returns 0.99354. This means that in 99.354% of the days, no more than 4 out of
13 drivers are absent. Thus, we determine that the required number of drivers to cover
the shifts is 13.

One might ask: Aren’t there 10 shifts to be covered, not 9? That is correct, but we
aim to cover only a certain percentage of shifts, as the remaining ones can be handled
by drivers working overtime if necessary. If all shifts were covered with a probability
of 99%, there would quite often be too many drivers on stand-by. The coverage factor
provides the ability to regulate the extent to which you want to have more drivers working
overtime (lower coverage, risk of being understaffed) or more drivers on stand-by (higher
coverage, risk of being overstaffed).

4.4 Creating a Day Off Schedule

Before assigning time frames to roster positions, we first create a day off schedule to
determine the size of the roster and the placement of the days off. We assume that
drivers may be absent with a binomially distributed probability ?01B . Based on real-
world observations, the demand for drivers 34<8 for each weekday 8 is determined
by calculating the minimum even number of drivers such that the number of drivers
showing up is at least (2>E 5 02 · 100)% of the number of shifts |(8 | with a probability of
?BD2:

34<8 =

&
min_demand(?01B , ?BD2,

⌃
|(8 | · 2>E 5 02

⌥
)

2

'
· 2

The demand 34<8 is then used to determine the day off schedule, for a detailed
description, please refer to Appendix 6. Based on the day off schedule, we can proceed
to construct and encode the empty roster ' containing only the days off. Given this
roster ', the goal now is to assign time frames to the empty positions in ' such that
the hard constraints are not violated and the objective function value is minimized. The
subsequent three sections define the hard and soft constrains, as well as the objective
function.

4.5 Hard Constraints

Given an assigned roster ' and the probability ?01B that drivers are absent, it must be
possible (with a probability of success of at least ?BD22) to assign every present driver

Proceedings of the 14th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2024

The Time Frame Rostering Problem 195

a shift such that the shift fits within the interval provided by the assigned time frame
and is of the correct type. There are two independent occasions to violate this abstract
constraint: First, we only ensure with a probability of %(�) = ?BD2 that there remain
enough time frames 5 of type C 5 > 0 to accommodate all split shifts and secondly, we
guarantee with probability of %(⌫) = ?BD2 that there remain enough time frames 5 of
type C 5 < 1 to accommodate the regular shifts, hence the overall probability of success
is %(� \ ⌫) = ?BD2

2. To check whether this abstract constraint holds, we would need
to simulate the shift assignment to time frames which itself is a NP-hard problem [11].
Hence, we break down the abstract constraint into hard constraints ⌘1 � ⌘3 and soft
constraint B1. Additionally, we verify for each solution (i.e., for each time frame roster)
by simulating absences and subsequent shift assignment whether constraints ⌘1� ⌘3 and
B1 were successful in ensuring that the aforementioned constraint holds (for details see
Section 5.2).

Minimum Coverage First, we define a coverage: Each weekday is split into time
intervals [g9 , g9+1) of length g9+1 � g9 = 0.5 (30 min), starting with g1 = 3 (i.e., 3am on
the current day) and ending with g55 = 30 (i.e., 6am on the next day). The shift coverage
of a time interval [g9 , g9+1) for weekday 8 is defined as the number of shifts B 2 (8 that
start before g9+1, end after g9 and are either split shifts or not:

<8=_2>E8, 9 =
’

B2(8 , CB=0, 0B<g 9+1 , 1B>g 9

1

<8=_2>E_B?;8C8, 9 =
’

B2(8 , CB=1, 0B<g 9+1 , 1B>g 9

1

The frame coverage is defined analogously:

5 A_2>E8, 9 =
’

5 2'8 , C 5 =0, 2 5 <g 9+1 , 3 5 >g 9

1

5 A_2>E_B?;8C8, 9 =
’

5 2'8 , C 5 >0, 2 5 <g 9+1 , 3 5 >g 9

1

The frame coverage must be greater or equal the shift coverage:

⌘10 : 5 A_2>E8, 9 � <8=_2>E8, 9 8 2 {0, ..., 6}, 9 2 {1, ..., 54}
⌘11 : 5 A_2>E_B?;8C8, 9 � <8=_2>E_B?;8C8, 9 8 2 {0, ..., 6}, 9 2 {1, ..., 54}

Minimum Frame Set The hard constraint ⌘1 is not sufficient by itself to ensure that
shifts fit into the available time frames. We need to guarantee that there are enough
frames to accommodate the shifts, taken into account the probability of absences ?01B .
A shift can lie in the interval of several time frames, hence we obtain a set of time frames

Proceedings of the 14th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2024

196 L. Frühwirth, N. Musliu

�(B covering a shift B. We determine the minimum size required for each of these sets
of time frames, similar to how we determine the necessary count of drivers and days off:

�(B = { 5 | 5 2 �, C 5 < 1, B 2 (, [0B , 1B] 2 [2 5 , 3 5]}
�(B?;8CB

= { 5 | 5 2 �, C 5 = 1, B 2 (, [0B , 1B] 2 [2 5 , 3 5]}

We also compute frame sets �(9 for artificial shifts of length 4 (assumed minimum shift
length) to get every possible frame set. Subsequently, we count the shifts having the
same frame set �(9 for weekday 8:

2>D=C�(8, 9 = |{B | B 2 (8 , �(9 = �(B}|
2>D=C�(B?;8C8, 9

= |{B | B 2 (8 , �(B?;8C 9 = �(B?;8CB }|

The size of a frame set �(9 for weekday 8 is defined as the sum of the count of frame 5
appearing in roster column '8 over all frames 5 2 �(9 :

|�(8, 9 | =
’
5 2�(9

’
5 2'8

1 |�(B?;8C 8, 9 | =
’

5 2�(B?;8C 9

’
5 2'8

1

The minimum size of a frame set �(9 for weekday 8 is then the number of frames |�(8, 9 |
necessary to cover at least (2>E 5 02 · 100)% of shifts possessing the frame set �(9 or
subsets thereof with a probability of ?BD2:

<8=�(8, 9 = min_demand(?01B , ?BD2,
’

�(:✓�(9

⌃
2>E 5 02 · 2>D=C�(8,:

⌥
)

The size of a frame set must be greater or equal the minimum size for this set:

⌘20 : |�(8, 9 | � <8=�(8, 9 8 2 {0, ..., 6}, 9 2 {1, ..., 30}

Split shifts are treated differently since they contain a long break, increasing the overall
shift duration. This makes it more important for drivers to known if their associated time
frames allow or even require a split shift. Hence, there are special minimum frame set
constraints for split shifts, for details please refer to Appendix 6.

Maximum Frame Set In addition to the hard constraints ⌘1 and ⌘2, we define maximum
frame sets. Instead of counting shifts with the same frame set, we count how many shifts
can be covered using any frame 5 in a frame set �(9 . This gives us the maximum
number of shifts coverable by a frame from frame set �(9 :

<0G_2>D=C�(8, 9 = |{B | B 2 (8 , 9 5 2 �(9 : [0B , 1B] 2 [2 5 , 3 5]}|

We once again employ the min_demand algorithm but this time in reverse. The maximum
size of a frame set �(9 for weekday 8 is determined by the maximum number of frames
|�(8, 9 | such that there is only a probability of 1 � ?BD2 for there to be more frames than
shifts to cover:

<0G�(8, 9 = min_demand(?01B , 1 � ?BD2, <0G_2>D=C�(8, 9 + 1) � 1

Proceedings of the 14th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2024

The Time Frame Rostering Problem 197

The size of a frame set must be smaller or equal the maximum size for this set. However,
this is restricted to frame sets of size less than 4, as larger sets render rosters infeasible.
For frame sets of size greater than 3, we adjust the maximum to match the number of
shifts |(8 | for weekday 8. In case the maximum is lower than the minimum, we decrease
the minimum such that it equals the maximum.

⌘30 : |�(8, 9 | <0G�(8, 9 8 2 {0, ..., 6}, |�(9 | < 4
⌘31 : |�(8, 9 | |(8 | 8 2 {0, ..., 6}, |�(9 | � 4

Forbidden Sequences Some sequences of time frames are forbidden, primarily due to
rest time regulations. A consecutive time frame assignment (51, 52) in roster ' cannot
appear in the list of forbidden sequences B4@ 5 1:

⌘4 : 8(51, 52) 2 ' : (51, 52) 8 B4@ 5 1 51, 52 2 �

Forbidden Frames Drivers follow an alternating scheme where in one week they are
only assigned early shifts, and in the subsequent week, only late shifts. Split shifts can
only be assigned during the first two days of the "early" week or the last day of the "late"
week. A workweek type is utilized to encode this information for each roster positions.
A time frame assignment 5 to a roster position of workweek type FC cannot appear in
the list of forbidden time frames for this workweek type:

⌘5 : 8 5 2 ' : 5 8 5 >A1FC 5 2 �, 5 = A
>
9
8 ,:

, FC = FCA
>
9
8 ,:

Our model includes additional hard constraints, which ensure that weekdays with similar
shifts also have similar time frames, and that the solution contains a certain number of
night and relief frames. These constraints are defined in Appendix 6.

Additionally, our problem includes several soft constraints. These constraints are
defined in Appendix 6.

4.6 Decision Variable

The time frames represent the decision variables. For each roster position A
>
9
8 ,:

in roster
' that is not assigned a day off, we assign a time frame A

>
9
8 ,:

:= 5 2 �.

4.7 Objective Function

The objective of this problem is to assign time frames to roster positions such that the
costs associated with soft constraints B1 to B6 are minimized while ensuring that hard
constraints ⌘1 to ⌘8 hold. To balance the costs, each soft constraint is multiplied by an
adjustable weight before aggregation, resulting in the following function:

min F1B1 + F2B2 + F3B3 + F4B4 + F5B5 + F6B6 F1,F2,F3,F4,F5,F6 2 N+

s.t. ⌘1 � ⌘8 hold

Proceedings of the 14th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2024

198 L. Frühwirth, N. Musliu

4.8 Solver-independent Model

Based on the problem definition provided in this section, we create a solver-independent
model of the time frame rostering problem by using MiniZinc [13]. A MiniZinc model
allows us to use both linear and constraint solvers. Our model1 includes all hard and
soft constraints as well as the objective function outlined in the problem definition. To
speed up the solving process, we also make use of redundant constraints and symmetry
breaking.

Redundant Constraints We include redundant constraints for the forbidden sequence
constraint. This is done by exploiting the time frames numbering. For some workweek
types and time frames we can state, for example, that the following time frame must be
smaller than or equal to the current one without checking the list of forbidden sequences.

Symmetry Breaking We can pre-assign time frames 5 2 �(9 if there is only a single
frame in the set (|�(9 | = 1). In such cases, there is no choice of time frames, and
we know, due to the minimum frame set constraint, that a certain number of these time
frames have to be in the roster. We pre-assign these time frames so that they are uniformly
distributed across the roster and assigned to positions where they do not influence the
overall solution quality.

5 Evaluation

We evaluate our proposed model using a diverse set of twelve real-world instances.
These twelve distinct sets of shifts are extracted from real-world shift plans, that have
been provided by a public transportation company. We also make this data available
to the scientific community2. Instance properties, time frame properties and parameter
settings can be found in Appendix 6. The evaluation process involves several steps:
Firstly, we solve the instances using two different state-of-the-art solvers and compare
the results. Secondly, we validate the solutions using a simulation model. Finally, we
discuss the obtained results in detail.

5.1 Results

To evaluate our solver-independent model, we solve the instances using two conceptually
different state-of-the-art solvers: linear solver Gurobi 11.0.0 [7] and constraint solver
OR-Tools 9.8.3296 [14].

The test setup looks as follows: For each instance, we set the time limit to 120
minutes. The solvers are allowed to use up to 20 threads. The experiments are run on an
Intel i5-13500 2.5GHz processor with 20 logical units and with 32GB of RAM available.

1https://github.com/lukasfruehwirth/time_frame_rostering/blob/main/frame_rostering_problem.mzn
2https://github.com/lukasfruehwirth/time_frame_rostering

Proceedings of the 14th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2024

The Time Frame Rostering Problem 199

We define the gap 6 between the objective value >E of a solution and the best known
lower bound ;114BC as:

6 = (|;114BC � >E |
>E

) · 100

Table 3 shows the objective values, optimality gaps and runtimes for both solvers:

Gurobi OR-Tools Gurobi OR-Tools

Inst. |S| |R| Obj. Value
>E

Gap
6

Obj. Value
>E

Gap
6

Runtime
(mm:ss)

Runtime
(mm:ss)

1 1,380 364 1,868,046 optimal 5,127,240 87.31% 16:15 TL
2 1,159 308 4,808,321 optimal 31,525,200 91.11% 10:04 TL
3 1,282 338 3,487,611 optimal 7,832,640 67.93% 39:49 TL
4 1,456 382 20,100,971 optimal 190,637,000 91.10% 21:35 TL
5 2,539 652 4,212,492 0.040% 113,196,000 99.39% TL TL
6 2,738 702 6,784,287 0.594% 303,801,000 99.83% TL TL
7 1,344 354 2,041,618 0.015% 4,138,020 74.92% TL TL
8 1,134 302 905,588 optimal 1,438,480 68.78% 17:29 TL
9 1,224 324 780,783 optimal 3,436,120 90.28% 29:46 TL
10 1,375 362 1,070,283 optimal 2,389,440 85.27% 42:38 TL
11 2,478 636 2,970,358 0.004% 10,427,500 94.47% TL TL
12 2,599 666 2,062,171 0.040% 160,549,000 99.80% TL TL

Table 3: Results – Comparison of Gurobi and OR-Tools
To improve the performance of both solvers, we tried to circumvent modeling hard
constraints as soft constraints with high penalties (see soft constraint B4). Instead of
relying on 14;>F(⌘23) and 14;>F(⌘24), we pre-determine the maximum number of
positions in roster ' for weekday 8 that can accommodate frames of type C 5 2 {1, 2},
according to the specified workweek types FC for each roster position. If the minimum
demand for ⌘23 and ⌘24 , as formalized in Section 4.5, surpasses this maximum, we
adjust the minimum to match the identified maximum. This approach allows us to define
⌘23 and ⌘24 as hard constraints in our model, while ensuring the model’s satisfiability.
The soft constraint B4 is thus reduced to B4 = 14;>F(⌘2 5) · ?4=⌘0A3_2>=. Nonetheless,
this modification to the MiniZinc model did not really affect Gurobi’s performance and
only slightly improved OR-Tools’ performance, which remained significantly below that
of Gurobi. Consequently, we did not include the results in this paper. However, results
for the modified model can be found in the master’s thesis [5].

5.2 Simulation

To check whether our abstract constraint formulated in section 4.5 does indeed hold, we
simulate absences. This is done by discarding some frames according to ?01B:

'8B8< = [5 | 5 2 '8 , A0=3 1 � ?01B]

Proceedings of the 14th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2024

200 L. Frühwirth, N. Musliu

Where A0=3 is for each frame in '8 a newly sampled, random real number between 0
and 1.

Using this reduced list of frames, we simulate the shift assignment for weekday 8 by
deploying a simulation model3 modeled in MiniZinc. For a detailed model description,
please refer to Appendix 6.

Since the simulation (shift assignment) itself is NP-hard [11] and rather time-
consuming, we do not simulate the entire roster week at once but separately for each
weekday. For each solution (i.e. time frame roster) and weekday 8, we simulate 100
shift assignments. The number of failed shift assignments for weekday 8 is denoted as
B8< 5 08;8

. The rate of success is then defined as:

B8<BD2 = (1 �
Õ6
8=0 B8< 5 08;8

700
) · 100

The objective is to achieve a success rate B8<BD2 > ?BD2
2 (see Section 4.5). Table 4

presents the simulation results for all instances and solvers:

Gurobi OR-Tools

Inst. |S| |R| Sim. Result
B8<BD2

Sim. Result
B8<BD2

1 1,380 364 99.14% 97.48%
2 1,159 308 98.43% 86.86%
3 1,282 338 98.57% 98.00%
4 1,456 382 96.14% 26.86%
5 2,539 652 99.29% 62.57%
6 2,738 702 99.71% 23.86%
7 1,344 354 99.00% 98.57%
8 1,134 302 98.71% 97.86%
9 1,224 324 99.14% 96.86%
10 1,375 362 99.00% 97.43%
11 2,478 636 99.71% 98.71%
12 2,599 666 98.71% 27.43%

Table 4: Simulation Results

5.3 Discussion

Table 3 clearly demonstrates that our model performs significantly better with the solver
Gurobi compared to the OR-Tools solver. Gurobi consistently achieves superior results,
quickly finding optimal solutions for 7 out of 12 instances and coming very close to
optimality for the remaining ones. Notably, even for the larger instances 5, 6, 11, and 12,
Gurobi produces solutions with a gap to the best known lower bound smaller than 0.6%.
Conversely, the constraint solver OR-Tools fails to solve any instances within the time
limit to optimality. The smallest gap reached by OR-Tools is 67.93%. Thus, all solutions

3https://github.com/lukasfruehwirth/time_frame_rostering/blob/main/shift_assignment_simulation.mzn

Proceedings of the 14th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2024

The Time Frame Rostering Problem 201

provided by OR-Tools are considerably far from the optimal solution. OR-Tools performs
comparably well in finding a satisfiable solution and can compute approximately ten
times more solutions than Gurobi within the designated time limit. However, these
additional solutions provide only minor improvements over the first solution found. It
appears that OR-Tools struggles with our model’s objective function, which consists of
several independent soft constraints.

Table 4 shows that for 11 out of 12 solutions generated by Gurobi, we achieve a
success rate exceeding ?BD2

2 · 100 = 98.01%. This suggests that hard constraints ⌘1
through ⌘3 and soft constraint B1 effectively model the abstract constraint mentioned
at the beginning of section 4.5. The only instance where the success rate falls below
98.01% is instance 4. If we take a closer look at the solution of this instance, we can
see that the softened hard constraints ⌘23 and ⌘2 5 have to be violated in order to not
violate hard constraint ⌘5 (forbidden frames), resulting in an objective value significantly
surpassing 1,000,000, as Table 3 reveals. To improve the success rate for these instances,
practitioners may need to consider relaxing some of the hard constraints ⌘4 to ⌘8 and, in
particular, ⌘5. Since we have softened some hard constraints, it becomes crucial to obtain
solutions close to the optimum; otherwise, the success rate of the simulation falls below
acceptable levels. This observation is supported by examining the simulation results
computed for solutions provided by the OR-Tools solver. Table 4 shows that for 10 out
of 12 solutions generated by OR-Tools, the success rate is below ?BD2

2 · 100 = 98.01%.

6 Conclusion

In this study, we introduce the time frame rostering problem, a novel challenge arising
from the desire for enhanced medium-term planning security and, generally, more robust
rosters in tram driver scheduling. We translate the abstract problem description into a
formal problem definition and provide a solver-independent model using MiniZinc.
This translation involves processing the given data to derive lower and upper bounds
for some of the hard constraints of the model. Additionally, we verify whether the
abstract constraint mentioned in Section 4.5 is indeed fulfilled by simulating tram
drivers’ absences and subsequent shift assignments.

The results reveal that the linear solver Gurobi is able to solve 7 out of 12 real-
world instances to optimality in less than an hour. For the remaining instances, Gurobi
generates solutions very close to the optimum within two hours. Furthermore, the
simulation shows that solutions based on our model are indeed feasible and deployable
in practice, as for almost all instances and simulation runs, the assignment of shifts
to time frames is successfully completed. Some instances had a slightly lower success
rate in the simulation because we allowed certain hard constraints to be violated to
satisfy others. This is a trade-off that practitioners should consider when using our
model. In summary, it can be stated that we have successfully developed a model for the
time frame rostering problem, that can be used to solve real-world instances to (nearly)
optimal levels within a reasonable amount of time.

Future work could test if other constraint solvers outperform OR-Tools and explore
approaches to improve the performance of constraint solvers. Moreover, further investi-

Proceedings of the 14th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2024

202 L. Frühwirth, N. Musliu

gation into optimizing time frame rosters may involve penalizing the interval width of
the time frames to further enhanced medium-term planning security of tram drivers.

Acknowledgements The financial support by the Austrian Federal Ministry of Labour
and Economy, the National Foundation for Research, Technology and Development and
the Christian Doppler Research Association is gratefully acknowledged.

Proceedings of the 14th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2024

The Time Frame Rostering Problem 203

Appendix A - Day Off Schedule

Every driver works 5 days per week, but the sum 34< =
Õ6
8=0 34<8 is not necessarily a

multiple of 5. Hence, we need to slightly adjust the demand:

5 A02 =

Õ6
8=0 38

5
�

$Õ6
8=0 38

5

%

If 5 A02 = 0.2 then 34<5 += 2, 34<6 += 2,
else if 5 A02 = 0.4 then 34<6 �= 2,
else if 5 A02 = 0.8 then 34<6 += 2,
else if 5 A02 = 0.8 then 34<5 �= 2, 34<6 �= 2

We determine the number of roster positions of roster ' by summing up the demands
and dividing by 5:

|' | =
Õ6
8=0 34<8

5

The day off demand 3>8 for weekday 8 is then the size of the roster minus the driver
demand 34<8:

3>8 = |' | � 34<8 , 8 2 {0, ..., 6}

The days off have to be two consecutive days. Furthermore, the size of a day off type
must be even and we limit the size of type >8 to |>8 | 2|>8+1 | and 2|>8 | � |>8+1 | for
8 2 {0, ..., 5}. In order to find the optimal day off schedule, we formulate the following
model in MiniZinc4 [13]:

Variables:

|>8 | ... size of day off type 8 2 {0, ..., 6}

G8 =

(
|>8 | + |>8+1 |, if 8 < 6
|>0 | + |>6 |, if 8 = 6

Objective function:

min |3>8 � G8 | 8 2 {0, ..., 6}

s.t.
6’
8=0

|>8 | = |' |

|>8 | mod 2 = 0 8 2 {0, ..., 6}
|>8 | 2|>8+1 | 8 2 {0, ..., 5}
2|>8 | � |>8+1 | 8 2 {0, ..., 5}

4https://github.com/lukasfruehwirth/time_frame_rostering/blob/main/day_off_type_size.mzn

Proceedings of the 14th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2024

204 L. Frühwirth, N. Musliu

After finding the optimal size for each day off type >0 to >6, day off type >7 is introduced,
which has a 16-week-long rotating day off schedule. The structure of this schedule is
provided by a public transportation company. Based on real-world observations, the size
of day off type >7 is calculated by using a fixed share of 30%:

|>7 | =
�
|' | · 0.3

16

⌫
· 16

Day off types 0-6 are reduced accordingly:

|>8 | =
(
|>8 | � |>7 |

8 , if 8 < 6
|>8 | � |>7 |

4 , if 8 = 6

Proceedings of the 14th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2024

The Time Frame Rostering Problem 205

Appendix B- Minimum Frame Sets for Split Shifts

The number of time frames in the roster allowing only split shifts to be assigned equals
80% of the total split shifts (see ⌘21 , ⌘22). The utilization of 80% aims to accommodate
small changes in the shift plan without making the rosters unsatisfiable. The minimum
size of a split frame set �(B?;8C 9 is defined similarly to a regular frame set, except that it
must cover 100% of split shifts (see ⌘23 , ⌘24). There are frames that can accommodate
regular as well as split shifts, hence we also calculate the minimum demand for all early
week time frames including the once designated for split shifts (see ⌘2 5). Furthermore,
time frames of type greater 0 are only allowed if the set of shifts contains split shifts
(see ⌘26).

⌘21 : |�(B?;8C 8, 9 | = |{B | B 2 (8 , CB = 1}| · 0.8

8 2 {0, ..., 6}, �(B?;8C 9 = { 5 | 5 2 �, C 5 = 1}
⌘22 : |�(B?;8C8, 9 | � 2>D=C�(B?;8C8, 9 · 0.8

8 2 {0, ..., 6}, |�(B?;8C 9 | = 1

⌘23 : |�(B?;8C 8, 9 | � min_demand(?01B , ?BD2, |{B | B 2 (8 , CB = 1}|)
8 2 {0, ..., 6}, �(B?;8C 9 = { 5 | 5 2 �, C 5 > 0}

⌘24 : |�(B?;8C 8, 9 | � min_demand(?01B , ?BD2, 2>D=C�(B?;8C8, 9)
8 2 {0, ..., 6}, �(B?;8C 9 2 {{12, 13}, {14, 15}}

⌘2 5 : |�(8, 9 | + |�(B?;8C8,⌘ | �

min_demand(?01B , ?BD2, |{B | B 2 (8 , CB = 1}| +
’

�(:✓�(9

⌃
2>E 5 02 · 2>D=C�(8,:

⌥
)

8 2 {0, ..., 6}, �(9 = {1, 2, 3, 4, 11, 14, 15}
⌘26 : |{B | B 2 (8 , CB = 1}| = 0 =) |{ 5 | 5 2 '8 , C 5 > 0}| = 0
8 2 {0, ..., 6}

Proceedings of the 14th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2024

206 L. Frühwirth, N. Musliu

Appendix C - Additional Hard Constraints

Maximum Frame Deviation Weekdays with similar shifts should also have similar
time frames. To ensure this, we define a maximum deviation of a time frame count
between two weekdays. The following algorithm uses the minimum coverage definition
(see ⌘1):

1 max_dev i a t i on (min_cov , dev_a l l owed) :
2 For (i i n { 0 , . . . , 5 })
3 x =

Õ29
9=0 <8=_2>E8, 9

4 y =
Õ29
9=0 <8=_2>E8+1, 9

5 I f (x < y)
6 dev = y / x
7 E l s e
8 dev = x / y
9 maxDev [i] = dev_a l l owed + c e i l (5 00 (dev − 1))

10 Re tu rn maxDev

For weekdays 0 to 5 the absolute difference in the count of frame 5 between two
consecutive days (8, 8 + 1) must be smaller or equal <0G⇡4E [8] (see ⌘60). For weekdays
0 to 4 the absolute difference in the count of frame 5 between any of these days must be
smaller or equal <0G⇡4E [8] (see ⌘61�3).

⌘60 : |
’
5 2'8

1 �
’
5 2'8+1

1 | <0G⇡4E [8] 8 2 {0, ..., 5}, 5 2 �

⌘61 : |
’
5 2'8

1 �
’
5 2'8+2

1 | <0G⇡4E [8] 8 2 {0, 1, 2}, 5 2 �

⌘62 : |
’
5 2'8

1 �
’
5 2'8+3

1 | <0G⇡4E [8] 8 2 {0, 1}, 5 2 �

⌘63 : |
’
5 2'8

1 �
’
5 2'8+4

1 | <0G⇡4E [8] 8 = 0, 5 2 �

Night Frames Time frames with an end time after 2am are called night frames and
are only allowed if there are also shifts ending after 2am. Furthermore, for frame sets
consisting of only night frames, the maximum frame set size is set to the minimum
frame set size:

⌘70 : |{B | B 2 (8 , 1B > 26}| = 0 =) |{ 5 | 5 2 '8 , 3 5 > 26}| = 0
⌘71 : <0G�(8, 9 := <8=�(8, 9 8 2 {0, ..., 6}, �(9 = { 5 | 5 2 �, 3 5 > 26}

Relief Frames Two of the time frames�(A = {11, 15} are considered to be relief frames,
since they can accommodate early and late shifts. These time frames are necessary to
balance potential imbalances between early time frames �(4 = {1, 2, 3, 4, 11, 14, 15}
and late time frames �(; = {5, 6, 7, 8, 9, 11, 15} and thus, appear in both sets �(A =
�(4 \ �(; . We determine the minimum size of frame set �(A by calculating the

Proceedings of the 14th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2024

The Time Frame Rostering Problem 207

maximum difference between early and late frames given that drivers are absent with
probability ?01B:

;18 = arg min
G

(
p

1 � ?BD2 18=><.235 (G, <8=(|�(8,4 |, |�(8,; |), 1 � ?01B) � 1

D18 = arg min
G

(1 �
p

1 � ?BD2 18=><.235 (G, <0G(|�(8,4 |, |�(8,; |), 1 � ?01B)

⌘8 : <8=�(8,A = D18 � ;18 8 2 {0, ..., 6}

Proceedings of the 14th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2024

208 L. Frühwirth, N. Musliu

Appendix D - Soft Constraints

Deviation from Desired Coverage In addition to the hard constraints ⌘1 � ⌘3 we
introduce a soft constraint that penalizes the deviation from the desired coverage. The
aim is to satisfy the abstract constraint mentioned at the beginning of section 4.5. We
calculate the desired coverage by again using the min_demand algorithm:

2>E_34B8, 9 = min_demand(?01B , ?BD2, <8=_2>E8, 9)
2>E_B?;8C_34B8, 9 = min_demand(?01B , ?BD2, <8=_2>E_B?;8C8, 9)

To calculate the deviation penalty, we square the difference between frame coverage and
desired coverage if the frame coverage is greater, and take the difference to the power of
4 otherwise. The difference between split coverage and desired split coverage is simply
squared:

2>E_?4=8, 9 =

(
(2>E_34B8, 9 � 5 A_2>E8, 9)4 if 2>E_34B8, 9 5 A_2>E8, 9
(2>E_34B8, 9 � 5 A_2>E8, 9)2 if 2>E_34B8, 9 > 5 A_2>E8, 9

2>E_B?;8C_?4=8, 9 = (2>E_B?;8C_34B8, 9 � 5 A_2>E_B?;8C8, 9)2

B1 =
6’
8=0

55’
9=1
2>E_?4=8, 9 + 2>E_B?;8C_?4=8, 9

Undesirable Sequences Some sequences of time frames are undesirable, primarily
due to rest time regulations. A consecutive time frame assignment (51, 52) in roster '
appearing in the list of undesirable sequences B4@D3 incurs a penalty ?(51, 52) (penalty
function ? is given):

B2 =
’

(51 , 52)2', (51 , 52)2B4@D3
?(51, 52)

Below Minimum Frame The hard constraints ⌘23 � ⌘2 5 sometimes result in unsatisfi-
ability. To prevent this outcome, we transform them into soft constraints and introduce
a high penalty if the frame set counts fall below the minima. The function 14;>F(⌘)
returns the extent to which a hard constraint ⌘ is undershot:

B4 = (14;>F(⌘23) + 14;>F(⌘24) + 14;>F(⌘2 5)) · ?4=⌘0A3_2>=

Frame Deviation Weekdays with similar shifts should also have similar time frames.
This is in particular the case for weekdays 0 to 4, since they usually have very similar
sets of shifts. We penalize the frame deviation between these weekdays:

B3 =
4’
8=1

15’
5 =1

|
’
5 2'8

1 �
’
5 2'8+1

1 |

Proceedings of the 14th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2024

The Time Frame Rostering Problem 209

Same Frame Next Day To provide drivers with some variety in the sequence of time
frames, we introduce a penalty for consecutive assignments of the same time frame
(5 , 5) in roster ':

B5 =
’

(5 , 5)2', 5 2�
1

Same Frames Next Week To achieve a more even distribution of time frames within
a day off type, we introduce a penalty for assigning the same time frames to two
consecutive "early" or "late" weeks. The penalty B6 is similar to B5, we simply count all
occurrences.

Proceedings of the 14th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2024

210 L. Frühwirth, N. Musliu

Appendix E - Instance and Parameter Settings

Table 5 illustrates the main properties of the twelve instances, where the column |(?8 |
stands for the number of split shifts in weekday 8:

Inst. |(0| - |(3| |(4| |(5| |(6| |(?0| - |(?4| |(?5| |(?6|
1 223 223 142 123 29 4 0
2 185 185 123 111 27 6 0
3 204 204 139 123 23 9 0
4 233 233 153 138 37 7 0
5 408 408 265 234 56 10 0
6 437 437 292 261 60 16 0
7 217 219 132 125 22 0 0
8 183 183 110 109 21 3 0
9 194 194 134 120 15 0 0
10 218 218 148 137 23 0 0
11 400 402 242 234 43 3 0
12 412 412 282 257 38 0 0

Table 5: Instance Properties
For all instances, we use the following parameter settings and time frames:

Parameter Setting
2>E 5 02 0.90
?01B 0.25
?BD2 0.99

34E_0;;>F43 5
?4=⌘0A3_2>= 1,000,000

F1 1
F2 10
F3 10,000
F4 1
F5 100
F6 100

Table 6: Parameter Settings

Time
Frame

Interval Length
(hh:mm) Type

1 10:30 0
2 11:00 0
3 12:30 0
4 12:30 0
5 11:00 0
6 12:00 0
7 12:30 0
8 11:00 0
9 7:30 0
10 15:00 0
11 16:00 0
12 16:30 1
13 17:00 1
14 12:30 / 16:30 2
15 16:00 / 17:00 2

Table 7: Time Frame Properties
Time frames 14 and 15 can accommodate regular and split shifts and are, therefore,
a combination of other time frames. This is the reason why there are two different inter-
val lengths given for these time frames in Table 7. If time frame 14 is assigned a regular
shift, then its properties are equal to those of time frame 4. If time frame 14 is assigned

Proceedings of the 14th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2024

The Time Frame Rostering Problem 211

a split shift, then its properties are equal to those of time frame 12. Similarly, if time
frame 15 is assigned a regular shift, then its properties are equal to those of time frame
11. Conversely, if time frame 15 is assigned a split shift, then its properties are equal to
those of time frame 13.

Proceedings of the 14th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2024

212 L. Frühwirth, N. Musliu

Appendix F - Simulation Model

Variables:

(8 ... list of shifts for weekday 8
'8B8< ... list of time frames for weekday 8
-8 ... list of length |'8B8< | with domain 0 to |(8 |

Constraints:

21 : All elements of -8 except 0 must be different
22 : 8B[9] 2 (8 : C

B[9] = 1 =) 9 2 -8
23 : |'8B8< | |(8 | =) 0 8 -8

24 : |'8B8< | > |(8 | =)
’

G2-8 , G=0
1 = |'8B8< | � |(8 |

25 : 8 9 2 [0, ..., |'8B8< |] : ((- [9] > 0) =) C
B[-[9]] = 0) =)

C
'8B8< [9] < 1 ^ [0

B[-[9]] , 1B[-[9]]] 2 [2
'8B8< [9] , 3'8B8< [9]]

26 : 8 9 2 [0, ..., |'8B8< |] : ((- [9] > 0) =) C
B[-[9]] = 1) =)

C
'8B8< [9] > 0 ^ [0

B[-[9]] , 1B[-[9]]] 2 [2
'8B8< [9] , 3'8B8< [9]]

We cannot assign the same shift to different time frames (21). Split shifts must be
assigned (22). If the number of remaining time frames is less or equal the number of
shifts, all of these time frames have to be assigned a shift (23). If the number of remaining
time frames is greater than the number of shifts, then all shifts have to be assigned to time
frames (24). The number of time frames without a shift assigned is then |'8B8< | � |(8 |.
If a shift of type 0 is assigned to a time frame, then this time frame cannot be of type 1
and the shift’s interval must lie within the time frame’s interval (25). If a shift of type
1 is assigned to a time frame, then this time frame cannot be of type 0 and the shift’s
interval must lie within the time frame’s interval (26).

References

1. Borndörfer, R., Schulz, C., Seidl, S., Weider, S.: Integration of duty scheduling and rostering
to increase driver satisfaction. Public Transport 9, 177–191 (2017)

2. Burke, E.K., Causmaecker, P.D., Berghe, G.V., Landeghem, H.V.: The state of the art of nurse
rostering. J. Sched. 7(6), 441–499 (2004)

3. Dantzig, G.B.: A comment on edie’s “traffic delays at toll booths”. Journal of the Operations
Research Society of America 2(3), 339–341 (1954)

4. Ernst, A.T., Jiang, H., Krishnamoorthy, M., Sier, D.: Staff scheduling and rostering: A review
of applications, methods and models. European journal of operational research 153(1), 3–27
(2004)

5. Frühwirth, L.: Exact Methods for the Time Frame Rostering Problem in the Context of Tram
Driver Rostering. Master’s thesis, Technische Universität Wien (2024)

Proceedings of the 14th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2024

The Time Frame Rostering Problem 213

6. Ge, L., Voß, S., Xie, L.: Robustness and disturbances in public transport. Public Transport
14(1), 191–261 (2022)

7. Gurobi Optimization, LLC: Gurobi Optimizer Reference Manual (2023), https://www.guro
bi.com

8. Heil, J., Hoffmann, K., Buscher, U.: Railway crew scheduling: Models, methods and appli-
cations. European journal of operational research 283(2), 405–425 (2020)

9. Ingels, J., Maenhout, B.: The impact of reserve duties on the robustness of a personnel shift
roster: An empirical investigation. Computers & Operations Research 61, 153–169 (2015).
https://doi.org/https://doi.org/10.1016/j.cor.2015.03.010, https://www.sciencedirect.com/sc
ience/article/pii/S0305054815000684

10. Kletzander, L., Musliu, N.: Solving the general employee scheduling problem. Computers &
Operations Research 113, 104794 (2020). https://doi.org/https://doi.org/10.1016/j.cor.2019
.104794, https://www.sciencedirect.com/science/article/pii/S0305054819302369

11. Lau, H.C.: On the complexity of manpower shift scheduling. Computers & Operations Re-
search 23(1), 93–102 (1996)

12. Lin, D.Y., Tsai, M.R.: Integrated crew scheduling and roster problem for trainmasters of
passenger railway transportation. IEEE Access 7, 27362–27375 (2019). https://doi.org/10.1
109/ACCESS.2019.2900028

13. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: Minizinc: Towards
a standard cp modelling language. In: International Conference on Principles and Practice of
Constraint Programming. pp. 529–543. Springer (2007)

14. Perron, L., Didier, F.: Cp-sat v9.8 (2023), https://developers.google.com/optimization/cp/cp
_solver

15. Van den Bergh, J., Beliën, J., De Bruecker, P., Demeulemeester, E., De Boeck, L.: Personnel
scheduling: A literature review. European Journal of Operational Research 226(3), 367–385
(2013). https://doi.org/https://doi.org/10.1016/j.ejor.2012.11.029, https://www.sciencedirec
t.com/science/article/pii/S0377221712008776

16. Wickert, T.I., Smet, P., Vanden Berghe, G.: Quantifying and enforcing robustness in staff
rostering. Journal of Scheduling 24(3), 347–366 (2021)

17. Wickert, T.I.: Personnel rostering: models and algorithms for scheduling, rescheduling and
ensuring robustness. Doctoral thesis, Universidade Federl Do Rio Grande Do Sul and KU
Leuven (2019)

18. Xie, L., Suhl, L.: A stochastic model for rota scheduling in public bus transport. In: Proceed-
ings of 2nd Stochastic Modelling Techniques and Data Analysis International Conference.
pp. 785–792 (2012)

Proceedings of the 14th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2024

https://www.gurobi.com
https://www.gurobi.com
https://doi.org/https://doi.org/10.1016/j.cor.2015.03.010
https://doi.org/https://doi.org/10.1016/j.cor.2015.03.010
https://www.sciencedirect.com/science/article/pii/S0305054815000684
https://www.sciencedirect.com/science/article/pii/S0305054815000684
https://doi.org/https://doi.org/10.1016/j.cor.2019.104794
https://doi.org/https://doi.org/10.1016/j.cor.2019.104794
https://doi.org/https://doi.org/10.1016/j.cor.2019.104794
https://doi.org/https://doi.org/10.1016/j.cor.2019.104794
https://www.sciencedirect.com/science/article/pii/S0305054819302369
https://doi.org/10.1109/ACCESS.2019.2900028
https://doi.org/10.1109/ACCESS.2019.2900028
https://doi.org/10.1109/ACCESS.2019.2900028
https://doi.org/10.1109/ACCESS.2019.2900028
https://developers.google.com/optimization/cp/cp_solver
https://developers.google.com/optimization/cp/cp_solver
https://doi.org/https://doi.org/10.1016/j.ejor.2012.11.029
https://doi.org/https://doi.org/10.1016/j.ejor.2012.11.029
https://www.sciencedirect.com/science/article/pii/S0377221712008776
https://www.sciencedirect.com/science/article/pii/S0377221712008776

