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Abstract. The Bus Driver Scheduling Problem is a combinatorial optimisation
problem with important real-world applications. The goal is to assign bus drivers to
predetermined bus tours in order to minimise an objective function that considers
the total time of each employee’s one-day work shift and their dissatisfaction.
Due to the amount of complex rules specified by a collective agreement and
European laws, this problem is highly constrained. Thus, exact methods are com-
putationally intractable. In recent work, two metaheuristics have been proposed
to solve this problem: Large Neighbourhood Search (LNS) and Construct, Merge,
Solve and Adapt (CMSA). In the literature, 65 real-world-like instances have been
used to test the algorithms. Among those instances, LNS seems to outperform
CMSA; nevertheless, the reason was still obscure.
In order to investigate the reason, we use Instance Space Analysis to show the
weaknesses and strengths of the two solution methods. First, we greatly extend
an instance generator to be able to generate varied real-world-like and synthetic
instances. This allows us to expand the previous set of instances from the literature.
We then present a set of features that describe the hardness of the instances. The
features consider the structure of the instance, such as the average break length for
each vehicle or the distribution of bus tours in the city. We observe that even if LNS
outperforms CMSA in real-world-like instances, it does not for some synthetic
ones.
Using Instance Space Analysis, each instance is projected into a 2D plane based
on selected features. We see clusters of instances in the instance space, and the
real-world-like are in the centre. The bus tour structure appears to have an impact
on the performance of the algorithms. Using this information, we can gain insights
into the weaknesses and strengths of the two algorithms.

Keywords: Instance Space Analysis, Bus Driver Scheduling Problem, Schedul-
ing, Combinatorial Optimisation
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1 Introduction

This work deals with the Bus Driver Scheduling Problem and how to (1) generate new
diverse instances and (2) how to objectively assess how the state-of-the-art algorithms
perform on those diverse instances.

The Bus Driver Scheduling Problem (BDSP) is a sub-problem of the general Trans-
portation Planning System, that includes Vehicle Scheduling, Crew Rostering, and
Timetabling [11]. The goal is to assign bus drivers to predetermined routes while min-
imising a specified objective function that considers operating costs as well as employee
dissatisfaction with their work shifts.

The problem has a clear practical relevance. Recently, a variant of the BDSP with
complex break constraints has been studied [2,3,1,7,5]. In this setting, there a set of
65 real-world-like instances (named Realistic) and performance results for two state-
of-the-art algorithms: CMSA [7] and LNS [5]. Based on the 65 Realistic instances,
LNS appears to outperform CMSA. However, we must scrutinise the diversity of these
test instances and seek to ensure they span a range of instance characteristics before
conclusions can be drawn about the merits of each algorithm.

Instance Space Analysis [10] is a methodology that allows the diversity of a set of
test instances to be visually examined, and insights into the strengths and weaknesses of
algorithms, across the mathematically defined boundaries of the instance space, to be
observed.

Our research contributions of this paper are:

– We developed an instance generator with whom we have generated diverse instances.
– We propose a set of features of the test instances to characterise their similarities

and differences.
– We compare the two main state-of-the-art algorithms for the BDSP on real-world-

like and synthetic instances.
– We scrutinise the instance space and point out the regions of instance space that are

not yet sufficiently covered.

This paper is organised as follows: Section 2 describes the Bus Driver Scheduling
Problem in detail. In Section 3 we present the Instance Space Analysis framework,
and the meta-data we built for the Instance Space Analysis. In Section 4, we show and
visualise the Instance Space Analysis. Finally, in Section 5 we present the conclusions
of the work and its future possible developments.

2 The Bus Driver Scheduling Problem

The investigated Bus Driver Scheduling Problem deals with the assignment of bus
drivers to vehicles that already have a predetermined route for one day of operation. The
problem specification is taken from the literature [2].

2.1 Problem Input

The input of the BDSP consists in three pieces of data:
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22 T. Mannelli Mazzoli et al.

– For a set % of positions (for instance, a set of bus stops), a time distance matrix
⇡ = (38 9 ) 2 R |% |⇥ |% | is given, where 38 9 represents the time needed for an employee
to go from position 8 to 9 when not actively driving a bus. If no transfer is possible,
then 38 9 = " , where " is a very large number. If 8 < 9 , then 38 9 is called passive
ride time, whereas 388 represents the time it takes to switch vehicle at the same
position, but is not considered passive ride time.

– For each position ? 2 % two values startWork? and endWork?: they represent
respectively the amount of working time required to start or end a work shift at that
position.

– A set ! of bus legs: each leg ✓ 2 ! is a 5-tuple:

✓ = (tour✓ , startPos✓ , endPos✓ , start✓ , end✓),

representing the trip of a vehicle between two stops at a certain time:
• tour✓ 2 N is the ID of the vehicle
• startPos✓ , endPos✓ 2 % are respectively the starting and the ending positions of

the leg
• start✓ 2 R is the time when the vehicle departs from position startPos✓ 2 R
• end✓ 2 R is the time at which the vehicle arrives to position endPos✓

Legs with the same tour C do not overlap: the intervals (start✓ , end✓) for ✓ such that
tour✓ = C are disjoint. The set ! is totally ordered by start, using tour as tie-breaker.

✓ tour
✓

start
✓

end
✓

startPos
✓

endPos
✓

1 1 420 495 0 1
2 1 520 530 1 2
3 1 540 550 2 1
4 1 558 570 1 0

Table 1: A Bus Tour Example

Table 1 shows a short example of one particular bus tour. The vehicle starts at time
420 (6:40 AM) at position 0, does multiple legs between positions 1 and 2 with waiting
times in between and finally returns to position 0.

For Realistic instances, the number of legs is proportional to the number of bus tours
with approximately =legs ⇡ 10 · =tours.

2.2 Solution

A solution ( to the problem is an assignment ( : ! ! ⇢ , where ⇢ ✓ N is the set of
employees. The number of drivers is not given, but one can imagine setting it as large
as needed to have a feasible solution.

Equivalently, it is useful to represent a solution by a set of shifts, that is the work
scheduled to be performed by a driver in one day [11]. More precisely, the shift of driver
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4 2 ⇢ is the preimage !4 = (
�1 ({4}) with the total order induced by !. Hence, the

notion of consecutive bus legs in a shift is well-defined.
Each shift of a driver 4 2 ⇢ must be feasible according to the following criteria:

– No overlapping bus legs are assigned to 4.
– Changing tour or position between consecutive legs 8, 9 2 !4 requires

start 9 � end8 + 3endPos8 ,startPos 9 .

– The shift !4 respects all hard constraints regarding work regulations as specified
below. These refer to different measures of time related to an employee 4 containing
the set of bus legs !4, as visualised in Figure 1.

start work

✓1

rest

✓2

rest

passive ride

✓3

end work

Working time,4
? ?

Driving time ⇡4

Total time )4

Fig. 1: Example shift [2]

Driving Time Regulations. The driving time of a shift !4 is

⇡4 =
’
82!4

(end8 � start8)

The driving time ⇡4 cannot exceed ⇡max = 9 h. The driving time is subject to additional
rules regarding driving breaks. A driving break between two consecutive bus legs 8 and
9 is

diff
8 9
= start 9 � end8

After at most 4 h of driving time, one of the following has to occur:

– One driving break of at least 30 min.
– Two driving breaks of at least 20 min each.
– Three driving breaks of at least 15 min each.

Once we reach all required breaks, the next block of at most 4 h starts.
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Total Time Regulations. The total time of a shift !4 is the span from the start of work
until the end of work:

)4 = end✓ + endWorkendPos✓ � (start 5 � startWorkstartPos 5 )

where 5 is the first leg and ✓ is the last leg in the shift !4. A hard limit of)4  )max = 14 h
is enforced.

Shift Splits. We say that the employee 4 has a shift split if !4 contains two consecutive
legs 8 and 9 such that:

start 9 � end8 � AendPos8 ,startPos 9 � 3 h

where A?,@ = 3?,@ if ? < @, else A?,? = 0. Denote by split
4

the number of shift splits
and by splitTime

4
the total amount of time the driver 4 spends on a shift split. A shift

split resets the driving time (i.e., it counts as a driving break). A shift contains up to two
shift splits.

Shift splits are unpaid, so they are badly regarded by bus drivers. This will play a
role in designing the objective function.

Working Time Regulations. The working time ,4 cannot exceed 10 h and has a soft
minimum of 6.5 h. If the employee is working for a shorter period of time, the difference
has to be paid anyway.

A minimum rest break is required according to the following options:
– ,4 < 6 h: no rest break;
– 6 h  ,4  9 h: at least 30 min;
– ,4 > 9 h: at least 45 min.

unpaid rest
2 h 2 h

3 h 3 h

paid rest paid rest
centred

30 min break

Fig. 2: Rest break positioning [2]

The rest break may be split into one part of at least 30 min and one or more parts of at
least 15 min. The first part has to occur after at most 6 h of working time. Whether rest
breaks are paid or unpaid depends on break positions according to Figure 2. Every period
of at least 15 min of consecutive rest break is unpaid as long as it does not intersect the
first 2 or the last 2 hours of the shift (a longer rest break might be partially paid and
partially unpaid). The maximum amount of unpaid rest is limited:

– If 30 consecutive minutes of rest break are located such that they do not intersect
the first 3 h of the shift or the last 3 h of the shift, at most 1.5 h of unpaid rest are
allowed;

– Otherwise, at most one hour of unpaid rest is allowed.
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2.3 Objective function

We minimise the objective function combining cost and employee satisfaction defined
in previous work [2]:

I =
’
42⇢

�
2, 0

4
+ )4 + ride4 + 30 change

4
+ 180 split

4

�
(1)

The objective function I represents a linear combination of six criteria for each employee
4. The actual paid working time , 0

4
= max{,4, 390} is the main objective (containing

actual working time and additional payments for short shifts), and it is combined with
the total time )4 to reduce long unpaid periods for employees. The next sub-objectives
reduce the passive ride time ride4 and the number of tours changes change

4
, which is

beneficial for both employees and efficient schedules. The last objective aims to reduce
the number of split shifts split

4
as they are very unpopular. The weights were determined

by previous work [2] based on preferences agreed by different stakeholders at Austrian
bus companies and employee scheduling experts. Details of the objective function can
be found in previous work [2,3,1].

3 Instance Space Analysis

Instance Space Analysis (ISA) is a methodology proposed by Smith-Miles et al. in
2014 [8] that extends the algorithm selection problem framework of Rice [6]. In ISA,
instances are represented as vectors of features. The instances are then projected onto
the 2D plane to separate hard and easy instances. Figure 3 illustrates the Instance Space
Analysis framework.

The problem space P contains all the theoretically possible instances of the BDSP.
Nevertheless, we only have results for a (smaller) subset of instances I ⇢ P, for which
we have experiment results.

The first component of the meta-data are some chosen features, used to characterize
the mathematical and statistical properties of the instances that (1) describe the similar-
ities and differences between instances in (2) have correlation with the performance of
one or more algorithms.

For a given instance G 2 I, we calculate the feature vector f (G), which represents an
instance in the feature space, F .

The second component are the performance measures. We imagine to have the
algorithm space A representing the set of algorithms available to solve all instances in
I. For each algorithm U 2 A and each instance G 2 I, we have a performance measure,
H(U, G): an element of a vector that describes the performance space, Y, and requires a
user-defined measure of “goodness,” such as the objective function value obtained for
a fixed computational budget. Both the features and performance measures for all the
instances in I, and all algorithms in A constitute the meta-data, which we represent
as two matrices L = [ 51, . . . , 5=] 2 R<⇥= and _ = [H1, . . . H=] 2 R0⇥= , where < is
the number of features, = is the number of problem instances, and 0 is the number of
algorithms. Hence, the meta-data is the set {L,_}.

In the original framework proposed by Rice in 1976 [6], a selection mapping (

was learned directly from features and performance. Later, in the expanded framework
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G 2 P
Problem

space

G 2 I
Problem
subset

f (G) 2 F
Feature
space

z(G) 2 R2

Instance
space

Footprints
in instance

space

Algorithm
selection

U 2 A
Algorithm

space

H(U, G) 2 Y
Performance

space

Select or generate
a subset O ⇢ P

Construct feature
vector f

Measure H(U, G) by
applying U to G

Generate new
instances

Define algorithm
footprints i(H(U,I))

U
⇤ = arg max ((z(G), H(U, G))

Infer H(U, G) for
any G 2 P

U
⇤ = arg max ((f (G), H(U, G))

Dimension
reduction

6( f (G), H(U, G))

Fig. 3: ISA framework [10] extending the original by Rice [6]

introduced by Smith-Miles et al. in 2014 [8], and extended by Smith-Miles and Muñoz
in 2023 [10], instances are projected from the feature space into a lower-dimensional
2D space using the dimension reduction 6 ( f (G), H(U, G)). It aims to yield an optimal
projection that looks for linear trends in both features and algorithmic performance
across the resultant instance space, in order to gain interpretable insights. This allows us
to get a visualization and enables a more detailed evaluation of algorithmic performance,
as well as algorithm selection based on the position of an instance in the instance space.

In the conceptual framework delineated in the preceding section, the ISA method-
ology involves six fundamental steps:

1. Acquiring experimental meta-data for a designated set of instances I ran across a
set of algorithms A. This includes capturing feature values L for all instances and
recording performance metrics _ for all algorithms across all instances.

2. Creating an instance space through a feature selection process applied to the meta-
data {L,_}, with consideration for a user-defined benchmark for optimal perfor-
mance, encompassing its theoretical boundaries.

3. Employing machine learning techniques to generate predictions for automated al-
gorithm selection.
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4. Establishing algorithm footprints and evaluating associated metrics.
5. Analysing the instance space to extract insights and assess the adequacy of the

available meta-data.
6. Generating supplementary meta-data as needed, and iterating from Step 2 onwards,

or concluding the process if no further iterations are warranted.

3.1 Problem Subset O

In 2020, Kletzander and Musliu [2] proposed a set of 50 real-world-like instances for the
BDSP. This set was later [1] extended with 15 new (again real-world-like) instances. The
instances are publicly available4. For these instances, the number of bus tours ranges
from 10 bus tours (about 70 legs) up to 250 (about 2300 bus legs). These instances are
build to reproduce particular properties seen in a specific industrial use-case, however,
in other settings involving different locations or rule sets, real-world instances might
exhibit very different properties.

In order to cover a larger portion of the instance space, we greatly extended the
original instance generator. It can generate instances with a larger number of bus stops
and more diverse distributions of bus legs and tours during the day. The generator uses
44 parameters.

We changed some of this parameters (one at time) and we then generated 219 new
diverse instances. The new instances are divided into 12 distinct class families (named
sources). A brief description of the types is given in Table 2.

Table 2: The 12 types of instance sources. The third column gives the value for the
existing benchmark instances.

Name Characteristic Standard

breakMax No breaks between two consecutive bus legs [3, 35] min
distanceAvailability The probability that 2 stops are connected is 0.1 0.9
distanceVariation Add uniform U[1,100] distance perturbation U[1,1.2]
legRegularity Probability of reusing the last leg is 0.1 0.9
numStations There are 1000 bus stops 10
morningPeak Morning peak is 5 times the regular demand 1.8
legPeriodMax Max number of break lengths in use per tour is 5 3
shortLeg Every leg length is in the interval [5, 15] min [20, 60] min
gridSpread Bus stops drawn using the distribution N2 (0, 1000) N2 (0, 50)
legMax The maximum leg length is 240 min 60 min
legMin The minimum leg length is 5 min 20 min

Figure 4 shows the demand distribution of two instances. In both cases there is
a significant morning peak when both employees and students need numerous buses
within a brief period, followed by a decrease in activity. With the instance generator, we
can create instances like in Figure 4b, where the peak in the morning is extremely high.

4https://cdlab-artis.dbai.tuwien.ac.at/papers/sa-bds/
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(a) Real-life-like (b) Synthetic

Fig. 4: Demand Distribution of active vehicles.

3.2 Algorithm Space A
We ran Instance Space Analysis with two algorithms from previous work.

The first algorithm is Construct, Merge, Solve and Adapt (CMSA) [7], a matheuristic
algorithm.

The second algorithm is Large Neighbourhood Search (LNS) [5], where a destroy
operator creates a sub-instance of the BDSP by removing all the legs of a number
of drivers based on tours that are shared by these drivers. Then, LNS uses Column
Generation as repair operator. Even if the solution of the sub-problem is not optimal, it
is in fact close enough to the optimal with a very small optimality gap.

We set 5 min as timeout for both algorithm. We considered the average of the
objective function values over 5 runs. All executions were performed on a cluster with
11 nodes using Ubuntu 22.04.2 LTS. Each node has two Intel Xeon E5-2650 v4 (max
2.20 GHz, f12 physical cores, no hyperthreading). For each run, we set a memory limit
of 4.267 GB and use one thread. The implementation is in Python, executed with PyPy
7.3.11. Column Generation is implemented in Java, using OpenJDK 20, and CPLEX
22.11 for the master problem.

3.3 Feature Space F
In order to describe the difficulty of each instance, we collect a set of features. A feature
is a number that characterizes a proprieties of an instances. We collect a set of 84
features, described in Table 3.

A special feature is the number of relative relief opportunities of an instance, defined
as follow.

Definition 1 (Relative Relief Opportunity (RRO)). Let ? 2 % be a position and C 2 R.
We define a relief opportunity in ? at time C (in minutes) as the proportion of bus legs
that are passing through position ? in the time window [C, C + 60 min):

''$ (?, C) = |{✓ 2 ! | startPos✓ = ? ^ start 2 [C, C + 60)}|
|{✓ 2 ! | startPos✓ = ?}|

Note that for each position ? 2 %, we can evaluate, e.g., maxC ''$ (?, C) and then
max?2% maxC ''$ (?, C) that tells us what is the maximum relief opportunity across
the positions throughout the day.
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Table 3: Set of 84 features used in Meta-Data. With glorious seven we mean the seven
descriptive statistics: Max, Min, Average, Median, Std, First quartile and Third quartile.

Feature Name Description

Size-related: Dimension of the problem (4 features)
Number of Tours Number of distinct bus tours of the problem
Number of Legs Number of distinct bus legs of the problem
Number of Positions Number of bus stops (positions) used
Number of Active vehicles Max number of active vehicles during the day

Geometry: (1 feature)
Average distance Average distance between bus stops

Bus Tours: Glorious seven across all tours for each feature (35 features)
Total Time per tour Total span time for each tour
Number of breaks per tour Number of breaks between consecutive legs
Number of proper breaks per tour Number of breaks of � 15 min for each tour
Number of legs per tour Number of bus legs for each tour
Number of large legs per tour Number of legs with length � 2 h for each tour

Distributions: Glorious seven across all legs for each feature (14 features)
Drive Bus legs lengths
Breaks statistics Length of breaks between consecutive legs

RRO: Max, Min, Avg, Median, Std across all positions (25 features)
Max RRO Max Number of RROs over the time horizon
Min RRO Min Number of RROs over the time horizon
Mean RRO Mean Number of RROs over the time horizon
Median RRO Median Number of RROs over the time horizon
Std RRO Std Number of RROs over the time horizon

Bin Packing Problem [4]: : is the longest leg length (5 features)
Huge Proportion of legs that have length |✓ | > :/2

Large Proportion of legs with :/3 < |✓ |  :/2

Medium Proportion of legs with :/4 < |✓ |  :/3

Small Proportion of legs with :/10 < |✓ |  :/4

Tiny Proportion of legs with |✓ |  :/10

Proceedings of the 14th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2024



30 T. Mannelli Mazzoli et al.

Z1

Z2

Instance Space: Distribution of Instances by Source

legRegularity numStations realistic morningPeak legPeriodMax shortLeg
distanceAvailability gridSpread legMax distanceVariation breakMax legMin boundary
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Fig. 5: Bus Driver Scheduling Problem instance space defined by Equation (2). We
recognise three main clusters: legMax, shortLeg and all the rest. We also observe that
the Realistic instances (in brown) are in the middle of the Instance Space.

4 Results and Evaluation

We perform the Instance Space Analysis using the Matlab toolkit MATILDA available
from https://matilda.unimelb.edu.au. The settings for MATILDA are the default settings
except the performance threshold set as 0.0.

Summing up, we have 284 instances from two distinct sources, 84 features described
in Table 3, and 2 algorithms: CMSA [7] and LNS [5].

4.1 Instance Distribution

Figure 5 shows the distribution of the instance sources across the instance space. We
notice that Realistic instances are located around the centre of the instance space,
meaning that the feature values are average. Moreover, shortLeg and legMax instances
appear to be close to the theoretical boundary of the Instance Space. Those are instances
where the leg length has drastically changed from the value of the Realistic instances.

The red solid outer line represents the theoretical boundaries made by considering
all the feasible combinations of features and their upper and lower bounds. The red
dotted line instead is the likely boundary.
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In total, we have 84 features. Equation (2) shows the projection matrix applied
to the ten features after the preprocessing (that includes normalisation and Box-Cox
transformation). We observe that four out of ten features describe the distribution of
drive, that is, the leg length. Two features are related to the Total Time per Tour, i.e., the
maximum and minimum total span of each tour, from the very beginning to the very end.
The other four features represent the distribution of the Relative Relief Opportunities.


/1
/2

�
=

26666666666666666664

0.2636 �0.7982
�0.1663 �0.6664

0.6380 �0.5291
�0.7371 �1.4743
�0.6819 �0.5257
�0.4333 �0.8723
�0.7684 0.3775
�1.3987 �0.2818
�0.4252 0.4900
�0.6950 0.0500

37777777777777777775

T

·

26666666666666666664

driveMax
driveMean

driveMedian
drive3rdQuartile

maxTotalTimePerTour
minTotalTimePerTour

stdMaxRro
stdMeanRro

stdMedianRro
stdStdRro

37777777777777777775

(2)

Figure 6 shows the distribution of four features. In Figure 6a we see that, as expected,
the average length of bus legs is very high for legMax instances (where the leg length
belongs to the interval [20, 240]), whereas for shortLeg instances is extremely low
(here the leg length belongs to the interval [5, 15]). Figure 6b shows the distribution
of the standard deviation (over the bus stops) of the minimum number of Relative
Relief Opportunities during the day. This essentially is related to the number of possible
changes/moves that we can do during the day for each bus stop. This value appears to
be very low among the legMax instances, where the legs are usually large and, therefore
the number of possible vehicle changes during the day is reduced. The other two images
are about the total time per tour. In Figure 6c we see a clear distinction between Realistic
instances and the new generated one. This is because the new generated instances have
a lower maximum of length of bus tours. Figure 6d shows the Minimum total time per
tour.

4.2 Algorithm Evaluation

Fig. 7 shows the binary performance distribution of the two algorithms. We observe
that in the middle cluster, LNS performs better than CMSA. However, CMSA appears
to have better results closer to the theoretical boundaries. Fig. 8 shows the prediction of
the Support Vector Machine, supporting this idea.

We believe that the "structure" of the bus tour impacts the performance of the two
algorithms. In particular, LNS removes all the bus legs with some selected bus tours.
In contrast, CMSA randomly generates a number of greedy solutions at every iteration
and, therefore, does not directly exploit the bus tours. LNS seems to perform better than
CMSA for most of the instances (including Realistic), but not for all. We observe that
CMSA gets better solutions for legMax and shortLeg instances. These instances have
very short tours. Thus, LNS does not benefit much from removing all the legs associated
with the same tour. Hence, CMSA (which does not explicitly depend on the structure of
bus tours) provides good results with no significant difference from the others.
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(b) stdMeanRRO
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(c) Max Total Time x Tour
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(d) Min Total Time x tour

Fig. 6: Distribution of features. The colors represent the feature values. Axes as defined
by the equation (2).

4.3 Filling the Gaps

Thanks to Instance Space Analysis, we observe that there is still a considerably extended
region between the four clusters in the instance space. This reveals opportunities to
generate new instances in order to fill this gap. A first possible way to do that is by
changing or adding parameters of the instance generator and trying to explore the
instance space.

A more elaborated one is to fix a target (e.g., a portion of the Instance Space to fill
up) and generate instances through a Genetic Algorithm that evolves new instances in
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(b) CMSA

Fig. 7: Binary performance distribution. We see that CMSA performs better in some of
the new generated instances close to the boundary.
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Fig. 8: Algorithm selection using SVM
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the desirable region, as done by Smith-Miles [9]. However, this procedure is problem-
dependent and requires more investigation.

5 Conclusions and Future Investigations

In this paper, we have applied Instance Space Analysis to the Bus Driver Scheduling
Problem for the first time. We evaluated the performance of two metaheuristic techniques
for the BDSP, providing insights into the strength of LNS and the boundaries of its good
performance. We greatly increased the capabilities of the instance generator and extended
the previous set of instances with new, diverse ones. We defined and evaluated a novel
set of features, seeing which features help the most to explain algorithm performance.

In the future, we want to fill the instance space by creating more instances that are
even more diverse than the ones present now. At first, we will consider other public
transportation systems, possibly located in different countries. Then, we will create
instances with new combinations of parameters like long leg lengths and short bus
tour lengths. Ideally, we want to use a Genetic Algorithm to automatically evolve the
instances to fill up certain regions in the Instance Space. The goal is to perform automatic
algorithm selection and outline the region of the instance space where one algorithm
performs better than another. Thanks to this problem’s structure, this will also be helpful
for related problems such as vehicle routing.

Furthermore, we will test other solution methods using other quality metrics, such
as the GAP from the best-known solution or the area under the curve of the trajectory
of solutions found during the search.
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