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The bus driver scheduling problem (BDSP, [11]) deals in its essence with assigning bus
tours’ legs to drivers. Such an assignment induces a shift for each driver, consisting of
categorized pieces of work like active driving time, manipulation time, passive ride time
to change between tours, breaks and shift splits (see Figure 1). Feasible assignments
must adhere to labor law and regulations imposed by collective agreements, such as
a maximum drive time and a sufficient number of breaks depending on the duration
and layout of a shift. For assignments to be implemented in practice, they must be
economically viable for the bus operator. At the same time, employees need to be happy
with their shifts to avoid absenteeism and unnecessary staff fluctuation.

In an ongoing project, we develop and study different features of a decision sup-
port system (DSS) prototype for automated BDS together with the personnel planning
consultancy company XIMES. The concrete problem variant at hand was introduced by
Kletzander et al. [4] featuring complex break constraints and seven different objectives
to capture the main qualities of an assignment: the paid time Cpaid (corresponding to the
actual costs), the wasteful time paid up to the minimum shift length of six hours if they
are shorter Cmpaid, the overall shift span including unpaid breaks Cshift, the number of
employees =emp, the number of shift splits =splits, where we have a long unpaid break,
the number of tour changes employees have to perform =

change, and the passive ride time
C
ride.

So far, this BDSP variant has been studied with domain experts and a well-defined
single weighted-sum objective with manually tuned weights in an expensive trial-and-
error phase. The current state-of-the-art approaches are based on Branch and Price by
Kletzander et al. [6] and a large neighbourhood search (LNS) by Mazzoli et al. [8].
Instead, we focus on finding assignments using a DSS without having to explicitly
state any prior preferences by weights but by setting goals for different objectives.
Furthermore, the DSS should help visualize a diverse set of solutions, facilitate learning
about dependencies between objectives, and suggest concrete hints on how to adjust
overly optimistic goals. To this end, we adopt and extend three different decision support
methods:

– Automated Weight Tuning (AWT): A recent automated approach introduced by Böð-
varsdóttir et al. [2] and extended by Kletzander et al. [5] which performs intertwined
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Fig. 1: Example solution to BDS instance with 23 employees and 17 tours. Active driving
times are tour-numbered blocks, brown/blue blocks are unpaid/paid breaks, red blocks
are passive ride time for a tour change, and long pink blocks are unpaid shift splits.

violation-dependent weight updates and optimization runs until an acceptable solu-
tion is found or too-conflicting goals are identified and reported back to the decision
maker (DM). Acceptability is defined by a feasible solution that meets current
thresholds on objectives, which are updated interactively until the DM is satisfied.

– Reference eXplainable Interactive Multiobjective Optimization (R-XIMO): A refer-
ence point based method by Misitano et al. [10]. First, the Pareto front is approx-
imated to quickly retrieve solutions by a scalarization function, taking a reference
point as input. SHAP values [7] are then used to quantify the contribution of differ-
ent input dimensions to the output and are converted into a hint on how to update
the reference point to improve a selected objective.

– R-XIMO with Shapley regression values: Mischek and Musliu [9] extend the R-
XIMO approach by directly using Shapley regression values instead of SHAP values
using a black box predictor which permits missing inputs. Their experiments use
weights as a preference structure to retrieve a solution from the Pareto front. Then,
Shapley values identify a rival of a desired target that the DM wishes to improve.
This leads to improvements more frequently for a test laboratory scheduling problem
than updating only the target’s weight.

First results. AWT consists of an exploratory phase taking time Cexp of intertwined
shorter optimization runs, in our case using simulated annealing (SA) and weight updates
depending on the current violations, either hard or soft. A final longer SA run of
duration C is performed using the weights of the best-found solution during exploration.
Table 1 shows the result of eight AWT runs over 50 BDS instances from [4]. BDS-1
is the problem variant without thresholds on the objectives starting from hard and soft
constraint weights all-equal-1 1 and : = 3 exploration threads. The acceptance rate, how
often an acceptable solution was found, is denoted by Aacp.

The values of the objectives are normalized instance-wise using gross leg times !
(including bus idle times), either by the total sum or in units of 8 h blocks. In BDS-1, we
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Table 1: Interactive AWT for BDS instance-average results with acceptance rate Aacp

using : threads and uniform (1) or learned (-⌘,B) initial weights w0 within =it iterations
and (exploration) runtimes (Cexp) C in minutes. Further solution metrics minimum paid,
work time, span, number of employees, shift split frequency, tour changes, and ride time.

?83 C⌘A4B⌘>;3B : w0 A
acp [%] =it

C
exp [0] C [0] Cmpaid

L C
work
L C

paid
L C

shift
L =

emp
L8h

)
splits
L8h

=
change
L8h

C
ride
L8h

BDS-1 3 1 100 3.1 3.4 13.5 0.44 0.97 1.41 1.02 1.68 940.3 0.29 0.56
BDS-2 C

⌘
emp 3 1 98 8.4 9.2 19.2 0.16 0.96 1.13 1.13 1.34 10.4 2.69 12.07

BDS-3 +C
B

change 3 1 86 9.2 10.0 20.0 0.23 0.98 1.20 1.11 1.38 18.2 1.03 11.07
-
⌘

100 3.8 4.2 14.2 0.21 0.96 1.17 1.08 1.38 35.9 0.90 7.13
BDS-4 +C

B
mpaid 3 -

⌘
84 9.5 10.2 20.3 0.02 1.11 1.13 1.47 1.27 2.9 1.32 52.77

BDS-5 +CBspan , C
B

splits 1 -
⌘

90 7.3 7.3 17.4 0.17 0.96 1.13 1.09 1.32 23.3 1.05 9.88
3 -

⌘
98 4.4 4.7 14.8 0.17 0.97 1.14 1.09 1.33 27.9 0.99 10.85

-
⌘,B

98 2.4 2.6 12.7 0.16 0.97 1.13 1.09 1.33 30.2 1.05 10.76

see that 1.68 employees are used on average to serve a gross 8 h block, with 0.29 tour
changes per 8 h block and very rare shifts splits (every ) splits = 940th block on average).
There are way too many employees with too short shifts. Therefore, for BDS-2, the
DM sets a threshold of 1.35 on the number of employees per 8 ⌘ block. This leads to a
desired massive reduction in costs per gross leg time (from 1.41 down to 1.13) at the
inconvenience of quite frequent shift splits (every 10th block) and tour changes (2.7
per block). Hence, the DM introduces another threshold in BDS-3 to reduce the tour
changes, which mildly increases costs and number of employees. Acceptable solutions
are found slightly less frequently, in 86% of cases. This process is continued by adding
two more thresholds until the DM is satisfied. The initial hard and soft weights are either
all-equal-1 or taking (hard or hard/soft) centroid weights - derived from AWT runs on
separate training data set to speed up the search of newly occurring online instances.
The impact of using parallel weight updates (: = 1 vs : = 3) and such learned centroid
weights is best seen for BDS-5, where the mean number of iterations goes down from
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Fig. 2: Parallel coordinate plot of non-dominated solutions for a BDS instance.
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7.3 to 2.4, also increasing the acceptance rate to almost 100%, to achieve the goals set
by the DM.

The other DSS features require an initial approximation of the Pareto front for a
given instance. A parallel coordinates plot [1] of non-dominated solutions created by
a first mutation-only evolutionary algorithm with NSGA-II selection rule shows first
promising results in Figure 2. The tradeoff between paid time/number of employees
and the shift ergonomy aspects are visible. Current work deals with a comparison with
Pareto Simulated Annealing (PSA) [3] and the implementation of other DSS approaches
[10,9] with Shapley value based guidance to update preference structures like reference
points and weights.
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