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Abstract. This paper extends a preliminary model to address the very important
problem of aligning industrial production with time periods where more renewable
energy is available. Modern industries may use multiple energy sources, each
having different temporal and quantitative availability. Our model uses forecasted
day-ahead energy prices and energy production mix to generate an optimized
production schedule. A toolset approach is applied where multiple solvers that
share a common data model is implemented. The paper presents a production
level Constraint Programming (CP) model and results from applying the toolset
to a number of real world instances.
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1 Introduction and related work

Emerging industrial sustainability domain dictate new production efficiency interven-
tions driven by concerns related to energy costs and climate changes. Local energy
production, renewable energy sources that introduce stochasticity in the availability and
auxiliary energy markets effect the energy mix and prices creating a new deregulated
era. Production scheduling is critical in the sustainability decision making process.
Integrated production scheduling, maintenance planning and energy controlling for
sustainable manufacturing systems using a hybrid of a Non-dominated Sorting Ge-
netic Algorithm (NGSA-II) based multi-objective genetic algorithm and a mathematical
model is used in [1]. A framework to allow collaboration between energy providers and
manufacturing companies is proposed in [2]. Energy price forecasts are signaled to the
manufacturers and an adaptive production scheduling approach considering the power
usage of manufacturers in response to time-varying energy prices is presented. In [3] a
Mixed Integer Linear Programming (MILP) stochastic programming model is proposed
that simultaneously optimize production scheduling and electricity procurement. An
energy aware scheduling model to optimize steel industry operations when multiple

Proceedings of the 14th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2024



Industrial Production Scheduling in the Energy Deregulation Era 347

energy sources are available using a minimum-cost network flow for cost optimization
is proposed in [4]. Recently, a flowshop scheduling problem to simultaneously mini-
mize makespan and total energy cost using critical-path based local search methods is
proposed in [5].

2 The EnerMan EAPS toolbox

The EnerMan Energy Aware Production Scheduling (EAPS) Toolbox supports the com-
bined requirements collected from diverse problems from energy demanding production
processes like automotive manufacturing and testing, semiconductor production, steel
and aluminum production, food processing and 3D additive components manufacturing.
A generic software component allows potential users to introduce new features in their
production planning and scheduling. The toolbox implements a number of construc-
tive heuristics, meta-heuristics and a Constraint Programming (CP) based solver. In the
current paper, a version of the CP solver is presented.

3 Constraint Programming Solver

The current CP model extends a preliminary CP model[6]. Special constructs like inter-
val variables, specialized global constraints (e.g., noOverlap, circuit, element) among
others are employed. The current implementation uses the most performant open source
solver (OR-Tools CP-SAT) and a commercial one (ILOG CP). Python is used for im-
plementation as it was easier to manipulate the amount of data required. The toolbox is
provided to the other services of the EnerMan platform as a OpenAPI RESTFul services,
exchanging data model information as JSON based messages.

Let J/Tj represent the set of jobs/tasks that must be scheduled, A the set of task
attributes and aj,t the attribute associated with each task. The set of factories and set of
machines in a f factory are represented by F and Mf respectively. Om and cm represent
the operation model and capacity of machine m. The setup time that will be needed if
tasks t1, t2 will be scheduled at machine m, with task t2 processed as the next task after
task t1 is represented by Sm,t1,t2. For each task t of job j and for all possible start times
the task can be scheduled at factory f, machine m and operation mode o, vectors Cj,t,o,m,f
and ECj,t,o,m,f hold the energy consumption and cost that task t incurs. These values are
calculated in advance by considering the machine characteristics and the energy cost
components.

The main variables of the model xvarj,t,o,m,f are optional interval variables that
represent if a task t of job j instance is performed on a machine m of factory f using
operational mode o and have a start time sj,t, an end time ej,t and a Boolean variable
is_pj,t,o,m,f that represent if they exist. evarj,t,o,m,f is an integer variable for the energy
cost of a task. Additionally, auxiliary variables sj , ej are the start and end time of a job,
assigned_toj,t holds the machine it is processes on, bt1,t2,m,f are Boolean variables that
assumes value 1 if both tasks t1, t2 are processed at the same machine and task t1 is
processed immediately before task t2 on machine m of factory f.

The global constraint noOverlap is used to avoid simultaneous processing of multiple
tasks at the same machine when the capacity of a machine equals to 1. When 2< � 1,
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the global constraint Cumulative is been used instead. For each 5 2 �,< 2 " 5 , 9 2
�, C 2 )9 , > 2 $<

=>$E4A;0?(0;;GE0A 9 ,C ,>,<, 5 ), 2< = 1 (1)

⇠D<D;0C8E4(0;;GE0A 9 ,C ,>,<, 5 , 2<), 2< � 1 (2)

If a machine is not available for specific time periods across the horizon of the
schedule, a set of dummy interval variables are defined with fixed starting times and
durations corresponding to the time periods that this machine is not available. This set
of dummy interval variables are used in the previous constraint, disallowing processing
of tasks to this machine.

Each C 2 )9 of 9 2 � must be scheduled exactly at one available machine.

’
5 2� ,<2" 5 ,>2$<

8B_?
9 ,C ,>,<, 5

= 1 (3)

To impose a setup time, when a pair of incompatible tasks are scheduled in sequence
at the same machine, the global constraint Circuit is used that defines a Hamiltonian
path in a sequencing graph that visits each node exactly once. To determine the task
sequence, a graph is defined for each machine and the nodes of this graph are all the
tasks that can be executed at it. For each 5 2 �,< 2 " 5 ,

⇠8A2D8C (0A2B<, 5 ) (4)

⇢=3$ 5 (GE0A 9 ,C1,>,<, 5 ) + (<,C1,C2 <= (C0AC$ 5 (GE0A 9 ,C2,>,<, 5 ) (5)

The energy cost of a task depends on the starting time of the corresponding interval
variable. The global constraint Element determines the energy cost of a task t.

⇢;4<4=C ((C0AC$ 5 (GE0A 9 ,C ,>,<, 5 ), ⇢⇠ 9 ,C ,>,<, 5 , 4E0A 9 ,C ,>,<, 5 ) (6)

The objective function coefficients c1, c2 determine the relative weights between
energy consumption and energy cost.

min
’

92� , C2)9 , 5 2� , <2" 5 , >2$<

⇣
21 ⇤ ⇠ 9 ,C ,>,<, 5 ⇤ 8B_? 9 ,C ,>,<, 5

22 ⇤ 4E0A 9 ,C ,>,<, 5

⌘

(7)

4 Evaluation, Conclusions and future work

Fig. 1 represents a weekly solution from a semiconductor manufacturing industry, with
colours representing different task types, the red line the variability of energy cost and
the green line the cumulative energy cost. In the specific instance more than 9K tasks are
scheduled. It was observed that it is possible to reduce the production cost by 6% while
in parallel we reduced the generated CO2 by 15% without sacrificing throughput. We
intend to release the solvers along with the data model and problem data to the public
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when we manage to anonymize the related data and appropriate approvals are given by
the problem owners.

Fig. 1. Weekly schedule from a single factory of a semiconductor manufacturing
industry.

We intend to extend the toolbox with the ability to automatically generate what-if
scenarios based on the forecasted prediction variability to calculate alternative solutions
transitions that will allow the factory to during the implementation of a scenario if a
demand response signal is observed the factory to participate in the demand response
energy market without significantly sacrificing production performance.
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