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Abstract. Collaborative learning has been widely used to foster students’ com-
munication skills and facilitate joint knowledge construction. However, there exists
ongoing debate regarding the optimal formation of teams to maximize the devel-
opment of these competencies. This work aims to provide educational managers
and teachers with a practical tool for team formation, allowing for the control of
member diversity within teams and similarity across teams based on pre-selected
student characteristics. The tool takes input in the form of individual student as-
sessments across various characteristics, alongside specifications for team size
ranges. Additionally, for each characteristic of the students, it takes a definition
of its order of importance and a diversity goal to achieve within the teams, that
is, heterogeneity or homogeneity. The output is a distribution of students into
teams that satisfies the specified sizes and optimizes diversity goals in the given
order while promoting similarity across teams. The tool solves a lexicographic
mixed integer linear programming problem. A notable feature of this approach is
its ability to accommodate diversity criteria for both numerical and categorical
characteristics. Through experimentation with six real-life cases involving up to
151 students per case, the tool demonstrates swift problem-solving capabilities
using state-of-the-art solvers. This efficiency renders the tool readily applicable
in practical educational settings.

Keywords: Team formation, Mixed integer linear programming, Lexicographic
optimization.

1 Introduction

Collaborative learning is an effective method for engaging learners by facilitating com-
munication and idea exchange among team members to construct knowledge together
[10]. However, simply putting learners in teams does not guarantee the success of collab-
orative learning. Therefore, the classification of learners into well-functioning teams is
one of the most challenging tasks in the field of collaborative learning. A line of research
regarding team composition has categorized collaborative teams into two major types
based on the within-team composition, which is homogeneous team (i.e., learners within
a team having similar ability levels) and heterogeneous team (i.e., learners within a team
having dissimilar ability levels) [13]. Various studies have compared the two types of
teams on learners’ achievement and social interaction and there seems to be a slight
prevalence of the heterogeneous team as the best choice [13]. For example,researchers
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believe that, compared to homogeneous teams, learners in heterogeneous teams tend to
coordinate and create common ground faster and easier because the diverse skills and
characteristics of team members might be complementary to each other and to the team
as a whole [11,12]. In addition, from the economics perspective, the level of equality
or fairness in heterogeneous teams is higher than that in homogeneous teams because
resources (e.g., time, knowledge) are more likely to be equally distributed to each team
member instead of being collected by a single or limited number of team members [3].

In practice, three primary approaches are employed for team formation: random
grouping (i.e., assigning learners in the teams by chance), self-selected grouping (i.e., the
learners choose with whom they want to work), and controlled grouping (i.e., assigning
learners in the teams by instructors or computing systems based on certain criteria)
[1,6,2]. The random grouping method commonly lacks control over team homogeneity
or heterogeneity, potentially leading to unequal participation and the formation of teams
with varying characteristics. This can result in disparities among teams, fostering a sense
of unfairness [7]. The self-selected grouping method tends to produce homogeneous
teams characterized by shared interests and amicable relationships among members,
albeit often leading to decreased task orientation and engagement in off-task behaviors
[6]. The controlled grouping method addresses these issues by facilitating the creation of
teams with desired levels of diversity or similarity within teams while also controlling for
variation among teams. However, achieving these objectives complicates the assignment
process both in terms of formalization and optimal solution finding. Consequently,
research has increasingly focused on algorithmic approaches to achieve controlled team
formation.

In the past decade, a variety of algorithm-based team formation methods has been
proposed to form controlled teams, that is, to create teams that are as similar among
themselves as possible (inter-homogeneous), while maximizing the learners’ individual
differences within such teams (intra-heterogeneous). The majority of team formation
algorithms are based on population-based metaheuristics such as ant colony optimization
[4], particle swarm optimization [9], and genetic algorithm [2]. Local search-based
heuristics such as random restart hill-climbing [8] and variable neighborhood search
are also employed to form collaborative teams [15]. There is no standard definition of
the optimization criteria in these references. Perhaps the most flexible tool available
is CATME [8], that allows instructors to define their own characteristics of interest,
their weight of importance in the team formation and whether within-team similarity or
dissimilarity should be promoted. Information about the pre-selected characteristics can
be collected directly from the students using the web application built around the tool.
Characteristics are handled by discretizing them. One interesting characteristic modeled
in this way is the student-schedule compatibility to favor the creation of teams that can
actually meet. CATME then assigns students to teams by maximizing the minimum
of a compliance measure computed on each team. The assignment is found starting
by a random assignment and improving it by swapping students in a hill climbing
fashion. However, in studies that aim at assessing team creation policies (e.g., which
characteristics are relevant to consider, whether they should be similar or dissimilar)
finding heuristic solutions to the team formation problem is undesirable because it adds
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a confounding element to the analysis, namely, the unknown degree of approximation
of the optimal solutions.

In our work, we formalize the problem in a way that can be solved to proven optimality
by mixed-integer linear programming (MILP) solvers. Similarly to [8], we define a
compliance measure for each characteristic within the teams. We distinguish between
numerical characteristics (e.g., a real number from [0, 1]) and categorical ones (e.g., the
nationality) and define different measures for these types. For numerical characteristics
we use the largest range of values within the team, while for the categorical ones we
use the number of different categories represented in the team. For each characteristic
in the order of importance we solve an optimization problem that tries to adjust the
measure so that within-team compliance to similarity or dissimilarity is maximized and
among-team similarity is also maximized. It is easy to extend this approach with side
constraints like ranges on the size of the teams or student incompatibilities of the type
“two persons cannot be in the same team” or similar. Our tests conducted on instances
of the problem involving up to 151 students indicate that the MILP approach exhibits
notable efficiency and pratical utility. Leveraging this approach, we have successfully
formed heterogenous groups and examined the efficiency of such diversified teams in
enhancing students’ achievement and fostering positive emotions during collaborative
learning [14].

2 Problem Formulation

We want to team up a set ( of students indexed by B. Each student is characterized
by a set of characteristics (or factors or features) � = {1..<} indexed by 5 . Some of
these characteristics, �@ ✓ �, are quantitative or numerical, that is, they take values in
R; others, �2 ✓ �, are categorical and can be mapped to take values in N or B. For
example, the gender of a person can be mapped into the integer numbers 0 and 1. A
categorical characteristic 5 2 �2 takes values from a finite set of categories (or levels)
! 5 = {1..E 5 } ⇢ N indexed by ✓. Thus, a student B 2 ( is characterized by a vector
Æ2(B) = [2B1, . . . , 2B<] with 2B 5 2 R for 5 2 �@ and 2B 5 2 N for 5 2 �2. Further, let
c : � ! � be a permutation of the characteristics such that the permutation c(1)..c(<)
induces a strict total order on the characteristics (from most to least important).

We aim at combining the students in ( into a set of teams T ⇢ 2( . We can denote
such a team formation as a mapping f : ( ! T . Thus, f(B) = ) , if student B 2 (
is assigned to team ) 2 T . We want the team formation to be a partition of T , that
is, )1 \ )2 = ; for any )1,)2 2 T and

–
)2T ) = (, and such that the size of each

team ) in T under f is {b |( |/|) |c, d|( |/|) |e}, i.e., as equal as possible. Among all
team formations satisfying these requirements, ⌃, we want to find those that maximize
within-team compliance and among-team similarity with respect to the characteristics
under the order induced by c.

We formulate the preference criterion above in the following way. For a team for-
mation f, let X 5 ,?,) be the absolute difference in the values of the characteristic 5 for
any pair of students ? = (B, A) in ) , that is, X 5 ,?,) = |2B 5 � 2A 5 | for all 5 2 �@ , ) 2 T
and {? = (B, A) | f(B) = f(A) = )}. Then, let \

5 ,)
and \ 5 ,) for 5 2 �@ be the smallest

and the largest of these differences within each team ) and \
5

and \ 5 the minimum and
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Within-team
heterogeneity

Within-team
homogeneity

Categorical factor
min [

5
min [

5

max [
5

—

Numerical factor
min \

5
min \

5

max \
5

—

Table 1: The optimization applied for the two types of factors under the two different
expression of within-team compliance (heterogeneity or homogeneity)

maximum difference throughout all teams, that is, for 5 2 �@:

\
5
= min
)2T

\
5 ,)

= min
)2T ,?2)

X 5 ,?,)

\ 5 = max
)2T

\ 5 ,) = max
)2T ,?2)

X 5 ,?,)

Similarly, for a team formation f, let ` 5 ,) be the number different of categories of
the characteristic 5 2 �2 represented by the members of ) and let [2

5

and [2
5

for 5 2 �2

be, respectively, the smallest and largest number of categories present in any ) 2 T ,
that is, for 5 2 �2

[
5

= min
)2T

` 5 ,)

[
5
= max
)2T

` 5 ,)

We use [
5

and \
5

as measures of the within-team dissimilarity that we may want to

maximize or minimize and \ 5 and [
5

as measures of the among-team dissimilarity that
we want to minimize. In Table 1, we consider the different cases. Accordingly, if we aim
for within-team heterogeneity and among-team homogeneity, we aim at the following:
for each categorical factor, first, we maximize the smallest number of categories in
the teams, thus promoting within-team heterogeneity, and, second, we minimize the
largest number of categories, thus promoting the range between minimum and maximum
number of categories among the teams to be small and consequently favoring among-
team homogeneity; for numerical factors, first, we maximize the smallest difference
within the teams, thus promoting within-team heterogeneity, and, second, we minimize
the largest value of the differences within the teams, thus aiming at the smallest range
between these values and consequently promoting among-team homogeneity. If we aim
at homogeneity within and among the teams we only minimize the largest number of
categories and the largest overall difference.

We solve this multi-objective optimization problem by lexicographic optimization
using the strict order c of importance on the characteristics. For the case of aiming at
within-team heterogeneity, with two objectives to optimize for every characteristics each
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optimization problem considers the following objective:

lex max
f2⌃

(i1 (f), . . . , i2< (f))

where

i8 (f) =

8>>>>>><
>>>>>>:

\
5

if 8 = 2c( 5 ) � 1 and 5 2 �@

�\ 5 if 8 = 2c( 5 ) and 5 2 �@

[
5

if 8 = 2c( 5 ) � 1 and 5 2 �2

�[
5

if 8 = 2c( 5 ) and 5 2 �2

for 8 = 1..2<.

This means that we consider first the characteristic that is first in the order induced
by c, that is, 5 2 � such that c( 5 ) = 1, and maximize the value \

5
or [

5

depending
on whether 5 is a quantitative or a categorical factor, respectively. Once the optimal
team formation with respect to this objective has been found, we set that objective as a
constraint and maximize �\ 5 or �[

5
, which corresponds to minimize \ 5 or [

5
. Then,

we consider the next characteristic in the order, i.e., 5 2 � such that c( 5 ) = 2, and
repeat the process while keeping all previously optimized objectives as constraints. We
proceed in this way until all characteristics are considered.

Each optimization problem can be formulated as a mixed integer linear programming
(MILP) problem (see Appendix A) and solved with one of the available general-purpose
MILP solvers. Artificial restrictions on the set ⌃ of feasible team formations, such as
“student B cannot be in the same team as student A” can be easily added within the same
formalism.

Consider the example of Figure 1. We have four students B1, B2, B3, B4 described by
two categorical characteristics⇠1 and⇠2 and four numerical characteristics,⇠3,⇠4,⇠5,⇠6.
The order of importance of the characteristics is c = (1, 2, 3, 4, 5, 6). We want to group
the students in two teams )1,)2. The table on the left shows the values of the char-
acteristics for the four students with columns in the same order of importance of the
characteristics. The signs +/� indicate whether we are interested in within-group het-
erogeneity or homogeneity, respectively, for the corresponding characteristic.

The assignment made by the algorithm is shown in the table on the right. It corre-
sponds to f(B2) = f(B3) = )1 and f(B1) = f(B4) = )2. The last two rows show the
measures of compliance among the teams for each characteristic. For ⇠1 both teams
include two categories, which is the best possible in this case. For ⇠2 it is not possible
to have two categories in both teams because of the restriction imposed on ⇠1. For the
following categories it seems that the situation can not improved any further because of
the constraints introduced on ⇠1.

3 Practical Experience

We used the tool in six real-life situations on 20, 21, 79, 99, 110, 151 students with 12
or 13 characteristics of both types giving rise to a maximum of 25 objectives. We used
gurobi [5] as MILP solver, which can handle lexicographic optimization automatically.
On all instances except one, the full lexicographic series could be solved in less then
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C1 C2 C3 C4 C5 C6
+ � + + � +

B1 1 2 0.3 0.4 0.2 0.3
B2 0 3 0.5 0.3 0.7 0.8
B3 1 4 0.1 0.7 0.3 0.2
B4 0 2 0.8 0.9 0.4 0.5

Team 1 C1 C2 C3 C4 C5 C6

B2 0 3 0.5 0.3 0.7 0.8
B3 1 4 0.1 0.7 0.3 0.2

Team 2 C1 C2 C3 C4 C5 C6

B1 1 2 0.3 0.4 0.2 0.3
B4 0 2 0.8 0.9 0.4 0.5

Measures C1 C2 C3 C4 C5 C6

[
5

or \
5

2 2 0.5 0.5 0.4 0.6
[
5

or \
5

2 1 0.4 0.4 0.2 0.2

Fig. 1: A numerical example. On the left, the input data for a case with four students (on
the rows) and six characteristics (on the columns), of which the first two categorical.
The order of priority on the characteristics is the same as their indices and the preference
for within-team similarity (+) or dissimilarity (�) is indicated in the second row of the
table. On the right, the teams produced by the solution to the model.

60 seconds of time. The instance with 110 turned out harder to solve. In 1000 seconds,
only the first 3 objectives were solved, the fourth proved much more computationally
demanding. We decided to halt the solution process and to use the best solution found
up to that point.

4 Discussion

We have developed a tool designed for team formation, which considers relevant student
characteristics. Emphasizing diversity with respect to these characteristics within teams
can potentially foster competence development, while maintaining similarity across
teams in their treatment of student characteristics promotes fairness. We formulated
these goals in a mixed integer linear programming model accommodating both numerical
and categorical characteristics. We dealt with the presence of multiple characteristics
by asking teachers to prioritize them a priori, thus solving a series of lexicographic
optimization problems. Other approaches for managing multiple characteristics, such
as weighted sum and allowing partial degradation of previous objectives, are feasible
avenues to explore. While Pareto optimization presents an intriguing alternative, its
implementation entails greater complexity. Our tool has undergone testing solely on real-
life instances involving up to 151 students, organized into teams of 5. The results indicate
that the approach is generally computationally practicable and efficient. For instances
that require more computational resources, a transition from an exact to a heuristic
approach is possible by allocating a limited time budget for solving each objective in
the lexicographic series. This budget allocation can prioritize objectives associated with
higher priority characteristics, thereby facilitating computational tractability.

We are planning to conduct scalability tests on larger artificial instances. Moreover,
we would like to deepen our understanding of the solution quality and the influencing
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factors’ impact on outcomes. Notably, as illustrated in the numerical example of Fig. 1,
the situation might become blocked very early. Finally, we are actively developing a
web-based application to serve as an interface for out tool, facilitating its accessiblity
and usability.
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Appendix A – The MILP Model

Let GBC for B 2 ( and )C 2 T be the binary variables that denote the assignment of B to
)C under f. Let also HC for )C 2 T be auxiliary binary variables indicating whether a
team )C contains students or not. A feasible team formation X satisfies:

’
)C 2T

GBC = 1 8B 2 ( (1)

’
B2(

GBC  1C HC 8)C 2 T (2)

’
B2(

GBC � 0C HC 8)C 2 T (3)

’
B2(

GB,C �
’
B2(

GB,C+1 8C = 1..|T | � 1 (4)

GBC 2 B 8B 2 (,)C 2 T (5)
HC 2 B 8)C 2 T (6)

Constraints (1) ensure all students are assigned to a team. Constraints (2)-(3) ensure that
if a team is created it is assigned students between its lower and upper bound 0C , 1C ,
respectively. Constraints (4) are symmetry breaking constraints.

To compute the values \ 5 , \
5

we need to introduce auxiliary binary variables IB1 ,B2 ,C
that are one if the two students B1 and B2 are in team )C and zero otherwise. For an
feasible formation ÆG 2 X:

GB1 ,C + GB2 ,C � 1  IB1 ,B2 ,C 8B1, B2 2 (,8)C 2 T (7)
GB1 ,C � IB1 ,B2 ,C 8B1, B2 2 (,8)C 2 T (8)
GB2 ,C � IB1 ,B2 ,C 8B1, B2 2 (,8)C 2 T (9)

\ 5 � |2B1 , 5 � 2B2 , 5 |IB1 ,B2 ,C 8 5 2 �@ ,8B1, B2 2 (,8)C 2 T (10)
\
5
 " 5 (1 � IB1 ,B2 ,C ) + |2B1 , 5 � 2B2 , 5 |IB1 ,B2 ,C 8 5 2 �@ ,8B1, B2 2 (,)C 2 T (11)

IB1 ,B2 ,C 2 B 8B1, B2 2 (,8)C 2 T (12)

\ 5 2 R+0 8 5 2 �@ (13)
\
5
2 R+0 8 5 2 �@ (14)

Constraints (7)-(9) ensure the I variable take the value described. Constraints (10)-
(11) force \ 5 and \

5
to stay above and below all realized differences, respectively. We

set " 5 = maxB1,B22({|2B1 , 5 � 2B2 , 5 |}.

To compute the values [
5
, [
5

we will slightly abuse of notation and use [C 5 ✓ and
[C 5 to indicate for characteristic 5 2 �2 and team )C 2 T whether the category ✓ is
represented and the number of different categories represented in the team, respectively.
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GBC  [C 5 ✓ 8B 2 {B | B 2 ( ^ 2B 5 = ✓}, ✓ 2 ! 5 , 5 2 �2,8C 2 T (15)

[C 5 ✓ 
’

B2( |2B 5 =✓
GBC 8✓ 2 ! 5 , 5 2 �2,8C 2 ⌧8 (16)

[C 5 =
’
✓2� 5

[C 5 ✓ 8 5 2 �2,8C 2 T (17)

[
5
� [C 5 8 5 2 �2,8)C 2 T (18)

[
5

 [C 5 8 5 2 �2,8)C 2 T (19)

[C 5 ✓ 2 B 8✓ 2 ! 5 ,8 5 2 �2,8C 2 T (20)
[C 5 2 Z+0 8 5 2 �2,8C 2 T (21)
[
5
2 Z+0 8 5 2 �2 (22)

[
5

2 Z+0 8 5 2 �2 (23)

Constraints (15)-(16) ensure [C 5 ✓ is either one or zero depending on whether any
student among those who have that category are assigned to the team. Constraints (17)
collect the number of different categories present in the team. Constraints (18) and
(19) force [

5
and [

5

to stay above and below the number of categories over all teams,
respectively.

We can finally state the overall MILP model with the objective function defined in
the main text:

lex max
f2⌃

(i1 (f), . . . , i2< (f))

subject to (1) � (6)
(7) � (14)
(15) � (23).
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