
A Rule Language and Feature Model for Educational
Timetabling�

Corentin Behuet, Vincent Barichard, David Genest, Marc Legeay, and David Lesaint

Univ Angers, LERIA, SFR MATHSTIC, F-49000 Angers, France
{firstname.lastname}@univ-angers.fr

Abstract. Educational timetabling subsumes core problems (student sectioning,
course scheduling, etc.) which are challenging from a modeling and computational
perspective. In this paper, we expand on the University Timetabling Problem
framework (UTP) designed to address a wide range of university timetabling
problems. The framework combines a rich data schema with a rule language and
comes with a tool chain to compile instances into constraint satisfaction problems.
We present the UTPmodeling language and a feature model to capture the problem
classes that are expressible. The feature model provides a simple problem classifier
which we use in our literature review. We also present a timetabling instance
generator and report on experiments carried out with Constraint Programming,
Answer-Set Programming and Mixed Integer Linear Programming solvers.

Keywords: Timetabling, Domain-Specific Modeling Language, Feature Model,
Exact Methods, Timetable Dataset Generation

1 Introduction

Various problem formulations, data formats and algorithms have been proposed to tackle
specific aspects of university timetabling ranging from curriculum balancing [16,18,50],
student sectioning [42,52], examination timetabling [14,10,40], curriculum-based or
post-enrollment-based course timetabling [40,12,37,13,26,17], tutor allocation [15], to
minimal timetabling perturbation [38,36]. Modeling languages have also been devel-
oped, notably the XHSTT language [48], the ITC language used in the 2019 international
timetabling competition [41,29] and the UTP language introduced in [9].
UTP is a modeling language for educational timetabling problems which is built on

a structured domain model coupled with a rules language. The model supports sessions
requiring a single resource and those needing multiple resources capturing essential
limitations related to the timing of sessions and distribution of resources. It operates
under the presumption that resources can overlap (i.e. rooms, teachers, and students can
be involved in simultaneous sessions), though this approach can be adjusted through
specific scheduling rules that prevent such overlaps. Given a UTP instance, the objective
is to assign time slots and allocate resources to class sessions so that core constraints
and rules are satisfied.

We first introduce the UTP schema which has been extended to broaden the range of
problems that can be modeled. We then present a feature model to classify educational

�Supported by a research grant from Université d’Angers.

Proceedings of the 14th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2024

A Rule Language and Feature Model for Educational Timetabling 67

timetabling problems and compare UTPwith other modeling languages. Lastly, we report
on experiments carried out with 3 UTP solvers - CP, ASP, MIP - on instances created with
a custom generator.

2 The UTP Schema

The UTP schema combines a schema to model timetabling entities and solutions, and
a rule language. The entity schema models the entities of a UTP instance - scheduling
horizon, resources, and course elements including course sessions -, their properties
and relationships. The rule language is user-oriented and serves to concisely express
constraints over any set of entities on the different facets of a problem (e.g., session
scheduling, capacity planning, resource allocation). Rules are formulated using a catalog
of timetabling constraint predicates and a query language to select, filter and bind entities
to sessions.

A rule-based UTP instance is converted to a constraint-based instance that is readily
processable by solvers. The conversion translates the entity schema as decision variables
and core constraints, and then flattens rules as additional constraints. A UTP instance
is thus cast as a hard constraint satisfaction problems. Solving an instance involves
scheduling sessions and assigning them resources so that the core constraints and the
rule constraints are satisfied. The solution schema allows to represent any timetabling
solution computed for an instance, be it incomplete or inconsistent.

This section introduces the components of the schema. The abstract syntax of the
entity schema is given in Table 1, its constraint-based modeling in Table 6 and Table 7
(Appendix), and the syntax of the rule language and constraint predicates in Table 8,
Table 9 and Table 10 (Appendix).

2.1 Entity Schema

The entity schema of a UTP instance combines a hierarchy of course elements (i.e.,
courses, course parts, part classes and class sessions) a scheduling horizon over which
sessions are to be scheduled, and 4 types of resources to which sessions must be allocated
to (i.e., rooms, teachers, students and student groups). The schema encodes the nesting of
course elements and various properties and constraints concerning session scheduling,
resource availability, resource eligibility, teaching service, room capacity, and student
sectioning.

The scheduling horizon is a range of integers denoting time points. The time points
are the start and end times allowed for sessions and any duration (i.e., session length,
travel time and break time) is measured as a number of time points. The horizon is
defined using 3 instance fields: the number of weeks F dividing the horizon, the number
of weekdays 3 making a week and the number of daily slots < making a 24-hour day.
The time points correspond to all possible triplets combining a week, a weekday, and a
daily slot. Note that daily slots may have any granularity (e.g., 1 minute, 2 hours) and the
scheduling horizon may be sparse (e.g., if weeks 8 and 8 + 1 are not consecutive calendar
weeks for some 1 8 < F or if weekdays are dropped, i.e., 3 < 7).

Proceedings of the 14th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2024

68 C. Behuet et al.

Course elements follow a hierarchical structure. Each course (e.g., Algorithms)
consists of one or more parts (e.g., Lecture and Lab), each part is taught to one or more
classes (e.g., lecture classes A and B), and all classes of a part have the same number
of sessions (e.g., sessions 1 to 10 for each lecture class). The schema requires that all
sessions in a class have the same duration and be chronologically ranked, i.e., session
of rank 8 + 1 in a class must start after session of rank 8 � 1 ends in any solution. These
constraints are paramount to model course plans that rely on clear-cut sessions (e.g.,
starting lab classes after 2 lecture sessions, synchronizing the 5C⌘ sessions of lab classes
for a joint examination). Besides, the schema allows to restrict the possible time slots
for the sessions of a part by setting allowed and forbidden ranges using the time format.
Note that sessions must start and end on the same day, and cannot be interrupted. The
schema also specifies a set of possible resources for each session. As for students, a
sectioning plan is assumed and hard-coded together with group-to-class assignments.
Specifically, students are partitioned into groups, and groups aggregated and assigned
to classes with no group being assigned to more than one class per course part. The
schema encodes group and class headcounts as well as class headcount thresholds used
for sectioning. Other sectioning data and constraints are compiled away. The implicit
constraint to satisfy is that a group must attend all the sessions of a class it is bound to.

Teacher-to-session assignments are not fixed but subject to domain and cardinality
constraints. To meet practical needs, the schema allows multiple teachers per session
(e.g., joint supervision of a lab session) and teacher-less sessions (e.g., unsupervised
project work). The number of teachers per session is specific to each course part and
is lower- and upper-bounded, possibly fixed. Each part is also associated with a set of
required teachers and a superset of allowed teachers. Hence two sessions of a class
may be allocated different teachers and numbers of teachers. A part also sets the fixed
number of sessions a teacher is committed to. Overall, various demand and capacity
requirements relating to teaching service can be addressed on course parts. If needed,
finer-grained rules may be imposed (e.g., requiring the same staff for a class, naming a
lecturer for a session).

Similarly, each part sets the required and possible rooms for its sessions and their
number. This caters for the case of multi-room sessions (e.g., for hybrid teaching) and
room-less sessions (e.g., field trips). In addition, each part casts its sessions as room-
exclusive or room-inclusive which entails different allocation constraints. A session
is room-exclusive if none of the room(s) hosting it may simultaneously host another
session. Conversely, a room-inclusive session allows for its room(s) to be shared from
start to finish. While single-room sessions may be cast as exclusive or inclusive, multi-
room sessions may only be cast as exclusive. That is, every session of a part whose
room upper-bound is greater than 1 is considered exclusive. The rationale is that multi-
room inclusive sessions have arguably little practical interest and they also burden the
computational model with decisions to make on the distribution of groups in shared
rooms.

All resources enforce capacity constraints w.r.t. their utilization. Students, teachers
and rooms are considered cumulative resources in this respect. That is, they may at-
tend, teach or host simultaneous sessions. A cumulative model is paramount to satisfy
flexible attendance requirements (e.g., students attending tutoring sessions overlapping

Proceedings of the 14th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2024

A Rule Language and Feature Model for Educational Timetabling 69

with compulsory courses) and multi-class events (e.g., an amphitheater hosting a joint
conference for different classes). Again, rules may be used to impose disjunctive re-
sources or to ban session overlapping. No limit is set on the number of parallel sessions
teachers and students may attend. Session hosting however is subject to capacity con-
straints and the schema encodes the capacity of each room, allowing for infinite capacity
to handle virtual rooms. As discussed above, at any point in time, an allocated room
will either co-host a multi-room (exclusive) session or host one or more single-room
sessions (one only if a session is exclusive). The schema hence enforces two kinds of
capacity constraints. The single-room case involves checking if the total headcount of
the session(s) falls below the room capacity. The multi-room case involves ensuring the
total capacity of the rooms envisaged for the session exceeds its headcount. If so, no
restriction is imposed as to the distribution of students in rooms and whether it preserves
group structure or not.

Lastly, the schema provides users with the ability to define their own classes of
entities, mixing course elements and resources as needed with no limit on classification
(e.g., a block of rooms, the lecturers of a faculty department). This is achieved by
labeling entities. Labels, built-in entity types and ids are the building blocks of the
query language to forge rules for any group of entities.

Table 1 provides a formal specification of the schema elements. Resources and
course elements, except sessions, are referred to as entities. Entities are typed, the set
of sessions is cast as distinct type, and each type is modeled as a finite set. The course
element hierarchy defines 1-to-many composition relations over the pair of types (- ,.)
corresponding to parent and child types in the course element hierarchy. Each relation
is modeled by a function 3-,. : - ! 2. mapping each object 8 of type - to the set
3
-,.

8
of its constitutive objects of type . . For instance, 3%, models the classes of each

part. Each compatibility relation defining the allowed or assigned resources of a course
element object for a given resource type and course element type defines a many-to-
many relation which we model the same way. For instance, 3%,' models the allowed
rooms per part and 3 ,⌧ the set of groups assigned to classes.

For notational convenience, the table also defines the maps resulting from the sym-
metric and transitive closure of the binary relation merging the composition and com-
patibility maps. This includes the maps computed over the course tree. For instance,
3
 ,% models the (singleton) part of each class, and 3⇠ ,(the sessions of a course. This

also includes the inverse compatibility constraints and those inherited along the course
tree. For instance, 3(,' models the rooms allowed for a session which results from
the composition of 3(, , 3 ,% and 3%,'. Lastly, the table defines the constants (e.g.,
number of weeks), scalar properties (e.g., room capacity), and remaining relations and
sets (e.g. required resources, labels).

2.2 Solutions

The solution schema is used to encode any solution pre-computed for an instance.
Such a solution needs not be complete, nor consistent with the instance constraints.
An instance may hence be associated with any kind of input solution based on the
computational task, e.g. no solution at all when generating a timetable from scratch,
a resource allocation solution to extend into a complete timetable, a seed solution to

Proceedings of the 14th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2024

70 C. Behuet et al.

F number of weeks dividing the scheduling horizon
3 number of weekdays making a week
< number of daily slots making a 24-hour day
, = {1, . . .F} range of weeks
⇡ = {1, . . . 3} range of weekdays
" = {1, . . .<} range of daily slots
� = {1, . . .F ⇥ 3 ⇥ <} range of time points (schedule horizon)
⇠ courses
% course parts
 part classes
' rooms
) teachers
* students
⌧ groups of students
� = {⇠} course domain
E = {�,⇠, %, , ',) ,*,⌧} types of entities
⇢ = [

-2E- set of entities
3
-,.

8
✓ . , - 2 {�,⇠, %, } set of entities of type . tied to entity 8 of type -

3
-,.

8
✓ . , - 2 {',) ,*,⌧} set of entities of type . associated with entity 8 of type -

L ✓ 2⇢ labels
(
(4) exclusive class sessions
(
(8) inclusive class sessions
(= ((4) [· ((8) class sessions
3
(,�

B
✓ � start times allowed for session B

3
(,-

B
✓ - set of entities of type - tied to session B

3
-,(

8
✓ (set of sessions tied to entity 8 of type -

3
-,(

8
✓ (set of sessions required by resource entity 8 of type -

<8=_A>><B%
?
2 N min number of rooms usable by each session of part ?

<0G_A>><B%
?
2 N max number of rooms usable by each session of part ?

<8=_;42CDA4A%
?
2 N min number of lecturers usable by each session of part ?

<0G_;42CDA4A%
?
2 N max number of lecturers usable by each session of part ?

B8I4
⌧

6
2 N headcount of group 6

B8I4

:
2 N headcount of class :

20?028CH
'

A
2 N capacity of room A

;4=6C⌘
(

B
2 � duration of session B

A0=:
(

B
2 N⇤ rank of session B in its class

B4AE824
)⇥%
C ,?

2 N number of sessions required by teacher C in part ?
Table 1: Core data model.

improve, or an inconsistent solution to repair. Formally, the solution schema supports
the representation of any decision made for a session as to its start time, its set of rooms
and its set of teachers.

Proceedings of the 14th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2024

A Rule Language and Feature Model for Educational Timetabling 71

2.3 Predicates, Constraints and Rules

The UTP schema comes with a rule language to formulate instance-specific constraints.
Rule constraints add to the built-in constraints of the schema and all must be checked
when evaluating a solution. The rule language is designed to target groups of entities,
or individual entities, and constrain the scheduling of their sessions from any stand-
point (e.g., an institutional rule imposing a time structure on curricula, a disjunctive
scheduling rule applied to student groups, a rule modeling the service plan within a
faculty department, a rule for a lecturer’s agenda). The schema comes with a catalog of
timetabling predicates to build rules and compile them into constraints. It also includes
a query language to select entities and sessions on which rules should apply.

All these components are designed around the concept of e-map. Formally, an e-
map is a pair (48 , (8) mapping an entity 48 to a set (8 of sessions. The query language is
used to forge queries that retrieve sets of e-maps. Each query selects, filters and binds
entities to sessions from instance data in order to extract one or more sets of e-maps.
Each rule is bound to a predicate and scoped by a query. At flattening time, the query is
performed to retrieve a fixed number of sets of e-maps. The rule is then compiled into
a conjunction of constraints by computing the cross-product of the extracted sets and
applying the predicate to each tuple of e-maps in the cross-product. Constraint e-maps
act as guards when checking solutions and they also narrow the scope of interpretation.
The rationale is to discard constraints that are irrelevant (e.g., a teacher’s constraint
forbidding afternoon lectures while the solution only assigns him lab sessions) and,
more generally, to limit constraint checks to the proposed assignments (e.g., checking
the above lecturer’s constraint on the actual lectures the solution assigns him).

As mentioned above, each constraint applies a predicate to a tuple of e-maps. UTP
predicates either accept a fixed number of e-maps or are variadic. Their semantics may
be indifferent to the ordering of their arguments or not, and some accept parameters.
Besides, each predicate may be used indistinctly with course e-maps or resource e-
maps (i.e., e-maps pairing course elements or resources), and any n-ary constraint
may freely mix the two types (e.g., a constraint booking rooms for sessions involving
different classes). Let � = ⇢ ⇥ 2(denote the domain of e-maps, the general form of
a constraint is 2((41, (1), . . . , (4=, (=), ?1, . . . , ?<) where 2 is a predicate of arity =,
(41, (1), . . . , (4=, (=) are e-maps ((48 , (8) 2 � for 8 = 1 . . . =) and ?1, . . . , ?< are values
for the parameters of 2 (< � 0).

The semantics of constraints relies on a join operation between constraint e-maps and
solutions. Note first that any solution may be cast as a tuple of e-maps by converting the
session-to-resource assignments into resource e-maps and re-encoding the fixed maps
binding course elements to their sessions. We say an e-map is null if it pairs an entity
with an empty set of sessions, and, by extension, a tuple of e-maps is null if it includes
a null e-map. Given a solution and an e-map for some entity, we call joint e-map the
pairing of the entity with the set of sessions on which the solution and the e-map agree,
i.e., the set-intersection of the sessions of the e-map and those assigned/bound to the
entity in the solution encoding. We say a solution is inconsistent with an e-map if their
joint e-map is null. The join operation extends to tuples by performing the operation
component-wise and a solution is said to be inconsistent with a tuple of e-maps if its is
inconsistent with at least one e-map in the tuple.

Proceedings of the 14th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2024

72 C. Behuet et al.

The evaluation of a solution against a constraint is conditioned by the tuple of e-maps
joining those of the solution and the constraint. If the joint tuple is null, the constraint is
considered satisfied (i.e., it is deemed irrelevant and discarded). Otherwise, the predicate
is evaluated on the joint e-map and the result depends on its built-in semantics. Specif-
ically, the predicate is assessed on the tuple of sets obtained by substituting each set of
sessions in the joint e-map either by the set of their assigned start times, or the set of their
assigned resources of a given type (rooms, etc). Which type (time or resource type) to
pick per e-map is fixed and predicate-specific (e.g., a temporal predicate will substitute
any e-map argument by start times). Note that entities play no role in the evaluation once
the join and substitution operations are over: each predicate is ultimately evaluated on
sets made of start times or sets of resources. Note also that join operations leave course
e-maps unchanged unlike resource e-maps. This means constraints applying exclusively
to course e-maps are de facto unconditional.

The UTP catalog provides predicates to cover the various dimensions of time–tabling
problems. Some only address scheduling (i.e., start times), others room allocation, and
so on. Table 9 and Table 10 given in Appendix describe the predicates of the catalog and
provide their semantics. Syntactically, each rule binds a predicate to a query and denotes
the conjunction of constraints obtained by applying the predicate to each tuple of e-maps
extracted by the query. A rule has the form 2h&, ?1, . . . , ?<i and is interpreted by the
formula

8(41, (1) 2 »&1…, . . . , (4=, (=) 2 »&=… : 2((41, (1), . . . , (4=, (=), ?1, . . . , ?<)

where 2 is a predicate of arity = accepting < parameters (< � 0), & is a query sized
to extract = sets of e-maps, »&8… denotes the 8-th set of e-maps extracted with &

(8 = 1 . . . =), and ?1, . . . ?< are values for the parameters of 2.

3 A Feature Model

This section introduces a feature model for educational timetabling problems based on
the UTP schema. The model is not meant to be exhaustive, nor stable, but is a first attempt
to capture the key variability points (the features) in the family of instances that can be
expressed with the schema. Some features are plain flags characterizing the compliance
of an instance to the schema (e.g., whether courses are hierarchically structured or not)
while others are logical assertions on instance data (e.g., whether the number of weeks
is set to 1 or not). In either case, each feature may be checked against any instance and,
in turn, instances classified into different classes based on the features they satisfy.

The feature model hence decomposes the space of UTP problems which serves dif-
ferent purposes. One is to quickly assess whether the schema is applicable to a particular
setting. Another is to provide a straightforward characterization of problem classes, sim-
ilarly to the way 3-field notation is used in other scheduling domains [27,3,1].The aim
is also to facilitate the comparison of UTP with competing schemas, possibly paving the
way for formal reductions between problems and conversions between schemas. Lastly,
the feature model can guide the configuration of efficient computational models by using
features to reformulate or optimize built-in constraints and predicate implementations.

Proceedings of the 14th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2024

A Rule Language and Feature Model for Educational Timetabling 73

We first recall the basic notations and definitions commonly used in feature mod-
eling languages [31,19,44]. A feature model is a tree-like structure connecting features
and factoring in different feature configurations. A configuration is a subset of fea-
tures selected from the model. The configuration process is subject to constraints that
primarily capture dependencies that exist between a feature and its children (a.k.a., sub-
features). These fall into 4 categories: mandatory sub-feature (it must be selected if the
parent is) labeled by •, optional sub-feature (it may be selected if the parent is) labeled
by �, or-feature (at least one of the sub-features must be selected) labeled by +, and
xor-feature (exactly one sub-feature must be selected) labeled by 1. Finer-grained cardi-
nality constraints may apply as well as cross-tree constraints modeling dependencies or
incompatibilities between features that sit in different branches.

Table 2 details our feature model. The feature-tree (rotated anticlockwise by 90°) has
3 levels: the root node (not shown), its sub-features and their labels shown respectively
on the 2nd and 1st columns and their variants shown on the next 2 columns. For instance,
selecting feature hosting in a configuration requires selecting at least one of no-room,
single-room or multi-room. The last column provides the formal or informal charac-
terization of each leaf feature. The sub-features of the root characterize core structural
elements (course and time structure), orthogonal decision layers (scheduling, room al-
location, etc.), and cross-cutting concerns (session planning, resource availability, etc.).
The latter is tagged optional and so are hosting and teaching as these decision layers
may be out of scope in an instance. We explain next the variants of these sub-features.

course-hierarchy applies to instances whose course elements are nested hierarchi-
cally. event applies when events unrelated to courses (e.g., staff meetings) must be
scheduled too. The next 3 features characterize the sparsity and scope of the time hori-
zon. full-period indicates if it is built on consecutive calendar weeks and full-week if
a weekday is missing. single-week checks whether the instance is restricted to a single
week which is typical of timetabling practices in high schools. The next 3 character-
ize the temporal structure imposed on sessions from “time grids” in high-schools to
free-flow timetables for higher grade curricula. no-overlap holds true if sessions can
never overlap if they start at different times, same-duration if all sessions have the same
duration, and modular if every session length, break time included, breaks down to a
unit session length (e.g., some sessions are 1h long and any other session is measured
in hours).

The next features characterize room utilization. no-room, single-room, multi-room,
hold true if the instance includes a session that demands no room, a single room or
more than 1 room, respectively. Similar features are introduced for the demand on
teachers. all-exclusive, none-exclusive, some-exclusive, indicate if the instance includes
only room-exclusive sessions, only inclusive sessions or a mix, respectively. room-
capacity, service, and sectioning apply if resp. room capacity, teaching service and
student sectioning are in scope. As for teaching, session-overlap indicates if teachers
are cast as disjunctive resources (the counterpart is introduced for students). Lastly, the
sub-features of crosscutting capture cross-cutting concerns and we simply list examples
of constraints taken from the UTP catalog to convey the meaning.

Proceedings of the 14th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2024

74 C. Behuet et al.

•

co
ur

se
s

� course-hierarchy courses are decomposed hierarchically into sessions

event events unrelated to courses must be scheduled

•

tim
in

g

�
full-period weeks are consecutive calendar weeks
full-week 3 = 7

single-week F = 1

•

sc
he

du
lin

g

�
8B8 , B 9 2 (, B8 < B 9 ,8⌘8 2 3(,�B8 ,8⌘ 9 2 3(,�B 9no-overlap
⌘8 < ⌘ 9 ^ ⌘8 ÷ < = ⌘ 9 ÷ < : ⌘8 + ;4=6C⌘(B8 ⌘ 9

same-duration 8B8 , B8 2 (, ;4=6C⌘(B8 = ;4=6C⌘
(

B8

Let � = {⌘ 9 � ⌘8 | B8 , B 9 2 (, ⌘8 2 3(,�B8 , ⌘ 9 2 3(,�B 9 ,

modular
B8 < B 9 , ⌘8 < ⌘ 9 } : 623 (�) = min(�) ^ 623 (�) > 1

�

ho
sti

ng

+
no-room 9? 2 %, <8=_A>><B%

?
= <0G_A>><B%

?
= 0

single-room 9? 2 %, <8=_A>><B%
?
= <0G_A>><B%

?
= 1

multi-room 9? 2 %, <8=_A>><B%
?
� 1 ^ <0G_A>><B%

?
> 1

� room-capacity 8A 2 ', 20?028CH'
A
< ;

1
all-exclusive (

(4) = (
none-exclusive (

(8) = ((Not compatible with “multi-room”)
some-exclusive (

(4) < ; ^ ((8) < ;

�

te
ac

hi
ng +

no-teacher 9? 2 %, <8=_;42CDA4A%
?
= <0G_;42CDA4A%

?
= 0

single-teacher 9? 2 %, <8=_;42CDA4A%
?
= <0G_;42CDA4A%

?
= 1

multi-teacher 9? 2 %, <8=_;42CDA4A%
?
� 1 ^ <0G_;42CDA4A%

?
> 1

� session-overlap 8C 2) ,8B8 , B 9 2 3) ,(C , B8 + ;4=6C⌘(B8 B 9 _ B8 � B 9 + ;4=6C⌘
(

B 9

service service constraints apply to teachers

•

at
te

nd
in

g

�
86 2 ⌧,8B8 , B 9 2 3⌧,(

6
, B8 + ;4=6C⌘(B8 B 9_session-overlap

B8 � B 9 + ;4=6C⌘(B 9
sectioning student groups must be fixed and pre-assigned

to classes

�

cr
os

sc
ut

tin
g

�

calendar allowed_slots, forbidden_slots, allowed_grids, ...
regularity periodic, allowed_grids,same_rooms, different_teachers, ...

orchestration same_start, different_day, sequenced, no_overlap
workload compactness, gap, ...
logistics same_rooms, adjacent_rooms, different_teachers, ...

resourcing allowed_rooms, required_teachers, ...
Table 2: A feature model for UTP.

4 Related Work

The design of timetables is a widely studied problem. Given the multitude of situ-
ations encountered, simpler, specialized variants of the general problem have been
created in order to produce solutions within an acceptable time frame. The best-known
variants include ETT (Exam Timetabling) [11,25] which focuses on exams, PE-TT (Post-
Enrolment-based Timetabling) [43,51] in which students register for the courses they
wish to take, CB-TT (Curriculum-Based Timetabling) [39,5,32], in which students enroll
for a curriculum that includes all the courses they have to take, TAP (Tutor Allocation

Proceedings of the 14th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2024

A Rule Language and Feature Model for Educational Timetabling 75

Problem) [15], which manages the allocation of teachers after the course slots have been
set, and HTT (Highschool Timetabling) [33,22], which deals with timetables for high
schools.

A timetable design problem is broader than simply scheduling lessons. It depends, for
example, on student sectioning [20,6] which consists in dividing students into different
groups. But it can also be the starting point for other problems such as BACP [50,18]
which seeks to balance teaching periods. Given the difficulty of finding a solution,
these ancillary problems are often solved beforehand. Simplification assumptions and
resource management differ from problem to problem. Table 3 uses the feature model
to compare the scope of the different problems, highlighting the common features and
differences.

Although widely studied, the problem of timetable design is often dealt with on an
ad-hoc basis. It is a crucial problem in the management of certain institutions which
seek above all to produce a solution to their specific problem. This explains the het-
erogeneity of approaches, making it difficult to evaluate and compare work in the field.

Features Problems ETT CB-TT PE-TT HTT TAP

courses course-hierarchy X
event X X X

timing
full-period X
full-week X X X
single-week X X

scheduling
no-overlap X X X X
same-duration X X X X
modular X X X X

hosting

no-room NA
single-room X X X X NA
multi-room X X NA
room-capacity X X X NA
none-exclusive X NA
all-exclusive X X X X NA
some-exclusive X X X X NA

teaching

no-teacher X X
single-teacher X X X X X
multi-teacher X X X
session-overlap X X X X
service X X

attending session-overlap X X X X
sectioning X X X

crosscutting

calendar X X X X
regularity X X X
orchestration X X X
workload X X X X
logistics X X
resourcing X X X

Table 3: Problem features: a comparison.

Proceedings of the 14th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2024

76 C. Behuet et al.

The emergence of competitions such as ITC (International Timetabling Competition)
has led to the creation of standardized formats, making it easier to compare approaches.
ITC-2007, one of the most studied schemas, provides a simplified representation of ETT,
PE-TT, and CB-TT. In this schema, the aim is to assign one room and one teacher to each
session (single-room,single-teacher). The description of academic courses is carried in
CB-TT by the curricula which group the courses together, and in PE-TT by the students
(session-overlap). The teachers service is assumed to have already been resolved up-
stream. A teacher assigned to a course does all the sessions of a course, and sessions are
otherwise exclusive (session-overlap). Time is expressed in terms of relative slots, i.e.,
there is a standard duration of one lesson between 2 slots (no-overlap). Class sessions
also all have the same duration (same-duration) and daily slots are repeated in the same
pattern every day (synchronous).

The XHSTT-2014 [45,23,21] schema, based on the ITC schema, focuses mainly on
modeling timetables for secondary schools. Ancillary problems are solved beforehand:
generation of groups, breakdown of rooms, teacher services. In addition to the usual
resources (rooms, teacher, students, etc.), it is possible to represent other types of
resource (e.g. equipment, vehicles, etc.). However, it is possible to leave out a set of
resources on which to make a choice of allocations when solving (single-room,single-
teacher). A pre-fit is carried out upstream of the schema to reduce the set of rooms to
those authorized according to the size of the groups of students (room-capacity, group).
The schema generally contains a single time grid, but there’s nothing to stop having
several. With this schema, the objective of the solver is to build a typical week (single-
week,periodicity). The model proposes a catalog of constraints: hard constraints are
interpreted as core constraints, while soft constraints have a violation score to minimize
(session-distribution). Constraints can be imposed on resources (resource-distribution).

The ITC-2019 [41,38,30] model focuses specifically on university timetables, more
specifically anglo-saxon universities. The ITC-2019 schema addresses scheduling as
a combinatorial optimization problem, with a cost function that takes into account 4
criteria. The criteria concern the choice of time slots for sessions, rooms for sessions,
violations of soft constraints and the overlap of sessions per student (session overlap).
This model takes into account a time horizon of several weeks (full-period,full-week.
Timetables are defined as the repetition over a set of weeks (multi-week) of one or
more sessions of the same duration starting on specific days of the week at the same
predefined time (periodicity). Each room has a penalty score for a session. This has an
impact on the choice of room (single-room, exclusive-room). The choice has been made
not to represent teachers, nor groups of students. A problem expressed in this model
comprises a constraint catalog made up of flexible constraints with a penalty score. The
catalog of constraints is used to ensure quality and to express the different needs of the
timetable (session-distribution, availability).

The UTP schema [9] has been designed to represent problems in which students
enrol on courses. As with the other schemas, simplifications are made. For example, it
is assumed that students are divided up into groups beforehand, just like the teachers
(the allocation of a teacher to a group and a session is done during the design process).
It allows problems to be represented over a modular time horizon and clearly identifies
teachers. It also allows resources (rooms, teachers, etc.) to be treated disjunctively or

Proceedings of the 14th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2024

A Rule Language and Feature Model for Educational Timetabling 77

Features Schemas ITC-2007 ITC-2019 XHSTT-14 UTP

courses course-hierarchy X X
event X X X

timing
full-period X X X
full-week X X X X
single-week X X

scheduling
same-duration X X X X
no-overlap X X X X
modular X X X X

hosting

no-room X X
single-room X X X X
multi-room X
room-capacity X X X
all-exclusive X X X X
none-exclusive X
some-exclusive X

teaching

no-teacher NA X X
single-teacher X NA X X
multi-teacher NA X
session-overlap NA X X
service NA X

attending session-overlap X X X
sectioning X X

crosscutting

calendar X X X X
regularity X X X X
orchestration X X X X
workload X
logistics X
resourcing X X X

Table 4: Schema features.

cumulatively according to need. A few changes have been made since [9]. In [9], the
problem of groups sectioning is dealt in conjunction with that of designing the timetable.
However, a timetable is often designed on the basis of provisional enrolments, as the
definitive enrolments are not yet closed. It is therefore not possible to set up the actual
groups at such an early stage. It is interesting to be able to dissociate these two problems
and, as with the other schemas, sectioning is considered to have been resolved upstream.
The UTP schema takes as input the list of groups formed. In [9], the time grid is identical
whatever the week. In the current version, this can be adapted for a particular day or set
of days in the entire time horizon.

Most of the schemas presented above stem from a desire to abstract and generalize
a real variant of the problem. Thus, certain assumptions and simplifications are made,
limiting the expressiveness of the schema, in particular to express other variants orthog-
onal to the initial assumptions. By analyzing Table 4, we can cite 3 cases where these
simplifying assumptions prevent the representation of other variants: the management
of the time horizon, the management of teacher services and the management of re-

Proceedings of the 14th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2024

78 C. Behuet et al.

sources. As far as time horizon management is concerned, only ITC-2019 and UTP can
represent a problem with a time horizon longer than a week. Managing the timetable
on a weekly basis is incompatible with institutions where each week is different. With
the exception of UTP, no schema takes into account the representation of a teacher’s
service. They consider that teachers are assigned upstream and cannot be exchanged.
However, when several groups follow the same course and several teachers are involved,
this removes flexibility and prevents certain solutions that could be of high quality from
being achieved. Finally, the management of resources also differs from one schema to
another. XHSTT and UTP allow teachers to be represented as such, whereas the ITCmod-
els do not explicitly include them. In addition, whether for rooms or teachers, the various
schemas, apart from UTP, do not allow the resource to be shared over several sessions.
For example, it is not possible to represent a problem where one teacher supervises
several practical sessions. Nor is it possible to represent a problem in which a session
must be hosted in several rooms (adjacent or not). Only UTP can represent problems in
which the resources are disjunctive or cumulative.

Competitions are regularly organized [29] and provide an opportunity to make
available a set of real or fictitious instances, enabling any new algorithm to be compared
with existing approaches. Whether for simulation or comparison purposes, it is useful to
have a means of generating new instances. Only the ITC-2007 schema has an instance
generator. Developed in 2008, this generator was improved in 2010 and again in 2022
to produce more realistic instances and better cover the range of possible configurations
(available on [2]).

5 Instance Generator and Experiments

This section introduces a generator of pseudo-random UTP instances and reports on
experiments carried out with three models, namely, CP, ASP and MIP. The objective is
to assess the scalability of the models and their applicability to real-life instances. The
complete list of instances and the models may be found in Appendix.

5.1 Instance Generator

To generate a UTP instance involves generating a course structure, groups of students,
teacher services, and rules. All those generators can be configured thanks to XML files to
select the features we want our instance to fit in.

In our generator, we define curricula associated with faculty departments. Curricula
enable us to associate a set of courses with a set of students and a set of teachers. Each
department is associated with a set of courses, teachers and specific rooms (i.e. rooms
that can be used only by courses of the department). The courses are divided into several
parts. The number of parts usually varies between 1 (only lectures) and 4 (lectures,
tutorials, practices and evaluations).

Student sectioning is the problem of assigning students to groups. The UTP schema
takes groups, rather than individual students, necessitating that the generator supply
groups. The input of the generator is the number of students enrolled in a curriculum.
A CSP model is used by the generator to create groups. The different sizes of groups

Proceedings of the 14th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2024

A Rule Language and Feature Model for Educational Timetabling 79

name |' | |) | |* | |(| #ru CP ASP CASP MIP
BT ST BT ST BT ST BT ST

gi8201 82 4 33 118 23 0.86 1.86 15.71 0.08 0.30 0.23 0.17 0.26
gi5301 99 96 55 139 33 0.85 483.59 68.70 0.36 0.40 0.12 0.22 0.49
gi4389 65 6 174 662 33 1.47 4.62 693.40 210.58 14.91 4.93 7.66 10.23
gi5567 94 94 1770 6180 562 4.75 381.78 122.89 3548.58
gi2767 92 21 501 2003 78 2.02 30.48 128.21 57.11 130.51 7995.32
real 117 183 768 2625 520 2.21 8.71 219.97 411.79 - -
Table 5: Selected list of instances. |' | is the number of rooms, |) | the number of teachers,
|* | the number of students, |(| the number of sessions, #ru the number of rules; BT is
the building time (s) and ST the solving time (s).

(lecture, tutorial, practice) should be given. It is possible to change the size of a specific
group for a curriculum (e.g., a specific curriculum with group sizes different from the
standard ones). The sectioning CSP can create groups with a fixed size, or create courses
with a limited number of groups, to fix the total number of hours. Teaching service is
a problem where we know how many hours a teacher has to do, how many hours each
part of a class lasts, and we want to assign each teacher with a number of classes in each
part. This will give us all the course parts a teacher has to teach. Note that we just know
how many classes a teacher is assigned to, not to which class, which is another problem
known as the tutor allocation problem. The generator uses a CSP model to tackle this
problem.

There are various rules, often used together with some being more common. We
defined three rule packs: 1) light: some classes have same_rooms, same_teachers,
periodic, and a sequenced rule between two parts of the course; 2) medium: all
classes have same_rooms and same_teachers, with some also having periodic
and sequenced; 3) heavy: like medium, but with additional same_teachers and
same_start rules for classes in the same part.

5.2 Instances and Results

We carried out experiments on pseudo-random instances built with our generator and
on a real-life instance from our Computer Sciences department. The pseudo-random
instances are listed in Appendix 6 and may be downloaded from [4]. A selected subset
is given in Table 5.

The generated instances were built by varying the number of rooms, groups and ses-
sions. All are single-room and single-teacher and uses the “medium” rules pack, meaning
that all classes have same_rooms and same_teachers, and some have periodic and
a sequenced constraint between 2 different parts of the same course. The real-life in-
stance consists of the 3 years of bachelor and the 2 years of master in Computer Sciences
at the University of Angers in 2023. The instance is reduced only to courses that occur
at the first time period of each curriculum.

The experiments were performed on a computer with a processor Intel-Xeon E7-
4850 v4, 2.1 GHz, 40MB of cache. The CP solver is Choco-solver [49] 4.10.12. The ASP

Proceedings of the 14th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2024

80 C. Behuet et al.

solver is Clingo [24] 5.6.2. The CASP solver is Clingcon [46] 5.2.0. The MIP solver is
Gurobi Optimizer [28] 10.0.3. The building (BT) and solving (ST) times can be found in
Appendix 6. Table 5 shows selected instances: an instance where all solvers performed
well (gi8201) and the worst-case instances in run-time for CP (gi5301), ASP (gi4389),
CASP (gi5567) and MIP (gi2767). Those instances show the limits of the solvers. In
particular, the more sessions there are, the more difficult it is for ASP and MIP to solve
instances to completion. Some instances could not be solved by ASP as it may need more
than 80GB when MIP instances use up to 15GB, and CP and CASP only need 8GB. Some
instances could not be solved by MIP due to time outs with a time limit set to 5 hours.

6 Conclusion

In this article, we focused on a class of timetabling problems (UTP), proposing a frame-
work that can adapt to different types of institutions, whether they operate like high
schools or universities, and to account for regular classes, exams, meetings, or special
events. Our current work addresses several aspects. Firstly, we aim to experiment on
larger real-world instances and are developing a set of software applications for this
purpose. We are also working on incorporating soft constraints and priorities to propose
a solution in cases where there is no solution that satisfies all expressed constraints.
Finally, we are working on timetable revisions to accommodate unforeseen events such
as teacher absences or room unavailability.

Proceedings of the 14th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2024

A Rule Language and Feature Model for Educational Timetabling 81

Appendix A – Core Computational Model

UTP instances are cast as hard constraint satisfaction problems. We present here a formal
specification of the constraint-based model for the entity schema. This core model only
formulates the built-in constraints that apply to any instance, leaving out the constraints
generated from instance-specific rules.

Table 6 lists the core decision variables of the model and includes auxiliary variables
for notational convenience. All, except temporal variables, are cast as set variables.

G
(,�

B
2 � the start time assigned to session B

G
(,'

B
✓ ' the set of rooms assigned to session B

G
(,)

B
✓) the set of lecturers assigned to session B

G
(,,

B
2 , (auxiliary variable) the week of the start time assigned to session B

G
(,⇡

B
2 ⇡ (auxiliary variable) the weekday of the start time assigned to session B

G
(,"

B
2 " (auxiliary variable) the daily slot of the start time assigned to session B

Table 6: Core and auxiliary decision variables.

Table 7 formulates the core constraints of the model. Note that some statements reify
primitive constraints (e.g., set memberhsip) as implicit pseudo-boolean variables.

Constraint (1) establishes the relationship between the start time of a session and its
start points on the 3 time scales. (2) restricts the start time of a session to the allowed
start points. Constraint (3) ensures that every session starts and ends on the same
day. Constraint (4) sequences the sessions of a class based on ranks. (5) models the
sets of possible and required rooms for a session as set inclusion constraints. (6) is the
counterpart for teachers. (7) and (8) set the bounds on the number of rooms and teachers
per session. (9) models the service constraint for each teacher measured in number of
sessions. Constraints (10) and (11) model the cumulative capacity of rooms and address
the 3 hosting scenarios discussed in Section 2.1 (multi-room exclusive, single-room
exclusive and single-room inclusive sessions). (10) ensures any (single- or multi-room)
exclusive session allocated to a room virtually fulfills the room capacity and hence has
exclusive use of it. Otherwise, the total headcount of the inclusive session(s) occupying
the room at any time must not exceed its capacity. Constraint (11) models the capacity
demand of each session, be it single- or multi-rooms, and ensures its allocated room(s)
meet the demand.

Proceedings of the 14th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2024

82 C. Behuet et al.

8B 2 (G
(,�

B
= G(,"

B
+ < ⇤ (G(,⇡

B
� 1) + < ⇤ 3 ⇤ (G(,,

B
� 1) (1)

8B 2 (G
(,�

B
2 3(,�

B
(2)

8B 2 (G
(,⇡

B
+ (G(,,

B
� 1) ⇤ 3 = (G(,�

B
+ ;4=6C⌘(

B
) ÷ < (3)

82 2 , 8B1, B2 2 3 ,(

2
A0=:

(

B1 < A0=:
(

B2 ! (G(,�
B1 + ;4=6C⌘(

B1) G
(,�

B2 (4)
8B 2 (3

(,'

B
✓ G(,'

B
✓ 3(,'

B
(5)

8B 2 (3
(,)

B
✓ G(,)

B
✓ 3(,)

B
(6)

8? 2 %,8B 2 3%,(
?

<8=_A>><B%
?
 |G(,'

B
| <0G_A>><B%

?
(7)

8? 2 %,8B 2 3%,(
?

<8=_;42CDA4A%
?
 |G(,)

B
| <0G_;42CDA4A%

?
(8)

8C 2) , 8? 2 % B4AE824
)⇥%
;,?

=
Õ
B23%,(

?
(; 2 G(,)

B
) (9)

8A 2 ',8⌘ 2 � 20?028CH
'

A
� Õ
B2((8)

(A 2 G(,'
B

) ⇤ (⌘ = G(,�
B

) ⇤ (B8I4
3
(,
B

)+
Õ

B2((4)
(A 2 G(,'

B
) ⇤ (⌘ = G(,�

B
) ⇤ (20?028CH'

A
) (10)

8B 2 (,8: 2 3(,
B

3
 ,'

:
< ; !B8I4

:
 Õ

A2G(,'B
20?028CH

'

A
(11)

Table 7: Core constraints.

Appendix B – Rules Syntax and Constraint Predicate Catalog

Table 8 provides the syntax of the rules language: e-maps, constraints, queries and rules.

(48 , (8) e-map mapping entity 48 to the set of sessions (8
� = ⇢ ⇥ 2(the domain of e-maps
2((41, (1), .., (4=, (=), ?1, .., ?<) constraint of predicate 2, arity =, parameters ?1, .., ?<

and e-map arguments (41, (1), .., (4=, (=) 2 �=
O = 1..max

B2(
A0=:

(

B
the range of session ranks

L⇤ = L [{⇢} [{{4} | 4 2 ⇢} the set of labels
& = [

=�1 (E ⇥ L⇤ ⇥ 2O)= the language of queries
2h&, ?1, . . . , ?<i rule of predicate 2, query & and parameters ?1, . . . ?<

- 2 predicate of arity = and number of parameters <
- & query sized to extract = sets of e-maps
- ?1, . . . ?< values for the parameters of 2

Table 8: Predicates, constraints, queries and rules.

Table 9 lists and describes the predicates of the catalog.

Proceedings of the 14th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2024

A Rule Language and Feature Model for Educational Timetabling 83

Predicate Description
adjacent_rooms Sessions must be adjacent in the given room(s)
allowed_grids Sessions may only start in the given time grid(s)
allowed_rooms Sessions may only be hosted in the given room(s)
allowed_slots Sessions may only run in the given time slots
allowed_teachers Sessions may only be taught by the given teacher(s)
assign_rooms Sessions are hosted in the given room(s)
assign_start Sessions start at the given time
assign_teachers Sessions are taught by the given teacher(s)
compactness The sessions makespan is bounded
different_daily_start Sessions start on different daily slots
different_day Sessions start on different days
different_rooms Sessions are hosted in different rooms
different_starts Sessions start at different times
different_teachers Sessions are taught by different teachers
different_week Sessions start on different week
different_weekday Sessions start on different weekday
different_weekly_start Sessions start on different weekly time points
forbidden_rooms Sessions cannot be hosted in the given room(s)
forbidden_slots Sessions cannot run in the given time slots
forbidden_teachers Sessions cannot be taught by the given teacher(s)
gap Gaps between sessions are bounded
no_overlap Sessions in the given set cannot overlap
pairwise_no_overlap Sessions cannot overlap if in different sets
periodic Sessions are periodic
required_rooms Sessions must be hosted in the given room(s)
required_teachers Sessions must be taught by the given teacher(s)
same_daily_start Sessions start on the same daily slot
same_day Sessions start on the same day
same_rooms Sessions are hosted in the same room(s)
same_start Sessions start at the same time
same_teachers Sessions are taught by the same teacher(s)
same_weekday Sessions start on the same weekday
same_weekly_start Sessions start on the same weekly time point
same_week Sessions start on the same week
sequenced Sessions run sequentially
sessions_workload The number of sessions per time frame is bounded
times_workload The total duration of sessions per time frame is bounded

Table 9: Catalog of UTP constraint predicates.

Proceedings of the 14th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2024

84 C. Behuet et al.

Table 10 provides the semantics of each predicate once the scope is restricted to a
tuple of sets of sessions (obtained after joining a solution and a constraint built with
the predicate). Given a =-ary predicate 2 accepting < parameters (< � 0) and given
a =-uple ((01, . . . , (0=) 2 (=, we provide the semantics for 2((01, . . . , (0=, ?1, . . . , ?<)
which denotes the evaluation of the predicate on the tuple.

Predicate Parameters
Semantics
adjacent_rooms(S’,K1,. . . ,K=) 8 ✓ ', 8 : 1..=
8B1, B2 2 (0, G(,�B1 = G(,�

B2 88 2 {1..=} : ⇠8 = {G(,'
B

| B 2 (0, G(,'
B
2 8}^

8A , A 0 2 ⇠8 : 9?0C⌘(A , A 0) ^ |{⇠8 | ⇠8 < ;, 8 = 1..=}| f (1)
allowed_grids(S’,G) ⌧ 2 (, 0 ⇥ ⇡0 ⇥ " 0)=, = 2 N⇤,

(
0 ✓ (,, 0 ✓ , ,⇡

0 ✓ ⇡," 0 ✓ "
8B 2 (0, 9: 2 {1..=} : G(,,

B
2 , 0

:
^ G(,⇡

B
2 ⇡0

:
^ G(,"

B
2 " 0

:
(2)

allowed_rooms((0,'0) (
0 ✓ (, '0 ✓ '

8B 2 (0, G(,'
B
✓ '0 (3)

allowed_slots((0,�0) �
0 ✓ �,

8B 2 (0 [G(,�
B

, G
(,�

B
+ ;4=6C⌘(

B
] ✓ �0 (4)

allowed_teachers((e,) 0),'0) (
0 ✓ (,) 0 ✓)

8B 2 (0, G(,)
B
✓) 0 (5)

assign_rooms((0,'0) '
0 ✓ '

8B 2 (0, G(,'
B

= '0 (6)
assign_start((0,�0) ⌘ 2 �
8B 2 (0, G(,�

B
= ⌘ (7)

assign_teachers (0,) 0))
0 ✓)

8B 2 (0, G(,)
B

=) 0 (8)
compactness((0,f) f 2 0..|�0 |
83 2 ⇡ : 9(00 = {B 2 (0 : G(,⇡

B
}^

((max
B2(00

(G(,�
B

+ ;4=6C⌘(
B
) �min

B2(0
(G(,�
B

)) �Õ
B2(00 ;4=6C⌘

(

B
))/(|(00 | � 1) f (9)

different_daily_start((0)
8B1, B2 2 (0, G(,"B1 < G(,"

B2 (10)
different_day((0)
8B1, B2 2 (0, G(,⇡B1 < G(,⇡

B2 _ G(,,
B1 < G(,,

B2 (11)
different_rooms((0)
8B1, B2 2 (0, G(,'B1 \ G

(,'

B2 = ; (12)
different_starts((0)
8B1, B2 2 (0, G(,�B1 < G(,�

B2 (13)
different_teachers((0)
8B1, B2 2 (0, G(,)B1 \ G

(,)

B2 = ; (14)
different_week((0)
8B1, B2 2 (0, G(,,B1 < G(,,

B2 (15)
different_weekday((0)

Proceedings of the 14th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2024

A Rule Language and Feature Model for Educational Timetabling 85

8B1, B2 2 (0, G(,⇡B1 < G(,⇡
B2 (16)

different_weekly_start((0)
8B1, B2 2 (0, G(,"B1 < G(,"

B2 _ G(,⇡
B1 < G(,⇡

B2 (17)
forbidden_rooms((0,'0) '

0 ✓ '
8B 2 (0, G(,'

B
✓ ' \ '0 (18)

forbidden_slots((0,�0) �
0 ✓ �

8B 2 (0 [G(,�
B

, G
(,�

B
+ ;4=6C⌘(

B
[\�0 = ; (19)

forbidden_teachers((0,) 0))
0 ✓)

8B 2 (0, G(,)
B
✓) \) 0 (20)

min_slot_gap((0,f<8=) f<8= 2 0..|� |,
9!c : (0 ! [[(0]] : G(,�

c

�1(8)
< G

(,�

c

�1(9)
(18< 9 |(0 |)

88 2 1..|(0 | � 1, G(,�
c

�1(8+1)
� (G(,�

c

�1(8)
+ ;4=6C⌘(

c

�1(8)
) � f<8= (21)

min_day_gap((0,f<8=) f<8= 2 0..|⇡ | ⇤ |, |,
9!c : (0 ! [[(0]] : G(,�

c

�1(8)
< G

(,�

c

�1(9)
(18< 9 |(0 |)

^88 2 1..|(0 | � 1, G(,⇡
c

�1(8+1)
� (G(,⇡

c

�1(8)
) � f<8= (22)

min_week_gap((0,f<8=) f<8= 2 0..|, |,
9!c : (0 ! [[(0]] : G(,�

c

�1(8)
< G

(,�

c

�1(9)
(18< 9 |(0 |)

^88 2 1..|(0 | � 1, G(,,
c

�1(8+1)
� (G(,,

c

�1(8)
) � f<8= (23)

max_slot_gap((0,f<0G) f<0G 2 0..|� |,
B1 = min

B2(0
(G(,�
B

), B2 = max
B2(0

(G(,�
B

+ ;4=6C⌘(
B
), G(,�

B2 � (G(,�
B1 + ;4=6C⌘(

B
) f<0G (24)

max_day_gap((0,f<0G) f<0G 2 0..|⇡ | ⇤ |, |,
B1 = min

B2(0
(G(,�
B

), B2 = max
B2(0

(G(,�
B

), G(,⇡
B2 � G(,⇡

B1 f<0G (25)

max_week_gap((0,f<0G) f<0G 2 0..|, |,
B1 = min

B2(0
(G(,�
B

), B2 = max
B2(0

(G(,�
B

), G(,,
B2 � G(,,

B1 f<0G (26)
last_first_slot_gap((01. . . ,(

0
=
,f<8=,f<0G) f<8=,f<0G 2 0..|� |,

88 2 1..= � 1, B8 = max
B2(8

(G(,�
B

+ ;4=6C⌘(
B
), B8+1 = min

B2(8+1
(G(,�
B

)
f<8= B8+1 � B8 f<0G (27)
last_first_day_gap((01. . . ,(

0
=
,f<8=,f<0G) f<8=,f<0G 2 0..|� |,

88 2 1..= � 1, B8 = max
B2(8

(G(,⇡
B

), B8+1 = min
B2(8+1

(G(,⇡
B

)
f<8= B8+1 � B8 f<0G (28)
last_first_week_gap((01. . . ,(

0
=
,f<8=,f<0G) f<8=,f<0G 2 0..|� |,

88 2 1..= � 1, B8 = max
B2(8

(G(,,
B

), B8+1 = min
B2(8+1

(G(,,
B

)
f<8= B8+1 � B8 f<0G (29)
first_last_slot_gap((01. . . ,(

0
=
,f<8=,f<0G) f<8=,f<0G 2 0..|� |,

88 2 1..= � 1, B8 = min
B2(8

(G(,�
B

+ ;4=6C⌘(
B
), B8+1 = max

B2(8+1
(G(,�
B

)

Proceedings of the 14th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2024

86 C. Behuet et al.

f<8= B8+1 � B8 f<0G (30)
first_last_day_gap((01. . . ,(

0
=
,f<8=,f<0G) f<8=,f<0G 2 0..|� |,

88 2 1..= � 1, B8 = min
B2(8

(G(,⇡
B

), B8+1 = max
B2(8+1

(G(,⇡
B

)
f<8= B8+1 � B8 f<0G (31)
first_last_week_gap((01. . . ,(

0
=
,f<8=,f<0G) f<8=,f<0G 2 0..|� |,

88 2 1..= � 1, B8 = min
B2(8

(G(,,
B

), B8+1 = max
B2(8+1

(G(,,
B

)
f<8= B8+1 � B8 f<0G (32)
no_overlap((0)”
B1 ,B22(0
B1<B2

(G(,�
B1 + ;4=6C⌘(

B1 G
(,�

B2) _ (G(,�
B2 + ;4=6C⌘(

B2 G
(,�

B1) (33)

pairwise_no_overlap((01,(02)”
B12(01 ,B22(

0
2

B1<B2

(G(,�
B1 + ;4=6C⌘(

B1 G
(,�

B2) _ (G(,�
B2 + ;4=6C⌘(

B2 G
(,�

B1) (34)

periodic((0,=) = 2 N
9c : (0 ! 1..|(0 |,88 2 1..|(0 | � 1, G(,�

c
�1 (8) + = = G

(,�

c
�1 (8+1) (35)

required_rooms((0,'0) '
0 ✓ '

8B 2 (0, '0 ✓ G(,'
B

(36)
required_teachers((0,) 0,�*))

0 ✓) ,� = {8C 2) 0 | X1,C , X2,C },
8C 2) 0,88 2 {1, 2}, X8,C 2 N

8B 2 (0, (G(,)
B
✓) 0 ^ 8C 2) 0, X1,C

Õ
B2(0

(C 2 G(,)
B

) X2,C) (37)

same_daily_start ((0)
8B1, B2 2 (0, G(,"B1 = G(,"

B2 (38)
same_day((0)
8B1, B2 2 (0, G(,⇡B1 = G(,⇡

B2 ^ G(,,
B1 = G(,,

B2 (39)
same_rooms((0)
8B1, B2 2 (0, G(,'B1 = G(,'

B2 (40)
same_start((0)
8B1, B2 2 (0, G(,�B1 = G(,�

B2 (41)
same_teachers((0)
8B1, B2 2 (0, G(,)B1 = G(,)

B2 (42)
same_week((0)
8B1, B2 2 (0, G(,,B1 = G(,,

B2 (43)
same_weekday((0)
8B1, B2 2 (0, G(,⇡B1 = G(,⇡

B2 (44)
same_weekly_start((0)
8B1, B2 2 (0, G(,"B1 = G(,"

B2 ^ G(,⇡
B1 = G(,⇡

B2 (45)
sequenced((01. . . ,(

0
=
)

8B8 2 (0
8
,8B8+1 2 (0

8+1, G
(,�

B8+1 � G
(,�

B8
+ ;4=6C⌘(

B8
(46)

time_workload((0,F1,F2) F1,F2 2 � [{0}
83 2 ⇡, F1

Õ
B2(0

;4=6C⌘
(

B
⇥ (G(,⇡

B
= 3) F2 (47)

Proceedings of the 14th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2024

A Rule Language and Feature Model for Educational Timetabling 87

session_workload((0,F1,F2) F1,F2 2 0..|(|
83 2 ⇡, F1 |{B 2 (0 : G(,⇡

B
= 3}| F2 (48)

Table 10: Semantics of UTP constraint predicates

Proceedings of the 14th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2024

88 C. Behuet et al.

Appendix C – Models

The CPmodel (see table 11 in appendix 6) for UTP is based on decisions variables listed
in table 6. For the constraint related to teacher service (requiredTeacher), we using the
global cardinality constraint (gcc), which enables element counting. It is also feasible to
add counting constraints to better distribute the workload or limit the number of hours per
day for a room, aiming to achieve more robust solutions. For conditional constraints, we
can apply the reification pattern (checking the feasibility and consumption of potential
values and use possible sink state). For constraints of equality, we employ the global
constraint all_equal, which ensures for input variables, all have the same value (the
implemented propagator is similar to gcc). For the no_overlap constraint and for the
main room usage constraint, we employ the global cumulative constraint to ensure
that, when sessions utilizing a resource, its maximum capacity is not exceeded, thereby
preventing multiple class sessions from overlapping. For difference/disjoint constraints,
we used the global n-ary constraints all_different for integer variables and all_disjoint
for set variables.

ASP [8] is a form of declarative programming for solving difficult search problems.
It operates by defining problems in terms of rules and constraints, then computing the
“answer sets” which are collections of assumptions that satisfy rules and constraints
without contradiction. The programmer specifies the desired properties of the solution
in a high-level language, and the ASP system automatically searches for all solutions
that meet these criteria, making it a powerful tool for knowledge representation and
reasoning tasks. ASP has been used to address timetabling problems proposed in the
ITC-2007 competition [7]. The ASP program we propose for UTP (see appendix 6 for
the full program) has been developed with clingo - an ASP solver - and clingcon - a
constraint answer set programing solver.

In the state of the art [47,35], mixed-integer linear programming (MIP) models
are usually used to solve timetable scheduling problems. In the literature, MIP models
are presented in a pseudo-Boolean format, where time is represented in a time-indexed
representation. This implies that time is discretized into intervals from 0 to 1 for each time
slot. For the UTP problem, where the time horizon is extended, classical representations
are not very efficient. Indeed, time-indexed representations exhibit exponential growth.
In other scheduling problems such as RCPCSP, representations can be time-indexed,
or as in CP in continuous time slots (integer value), or even an event-based approach.
Continuous time variables in MIP offer advantages in terms of variable economy, but
they require techniques such as big-M to express disjunctions. In some articles [34], it
has been demonstrated that event-driven approaches are more effective than continuous
or time-indexed approaches for extended time horizons. Here, we present a MIP program
for UTP. The program will be used in our experimental study at Section 5(see Appendix 6
for the full program).

Proceedings of the 14th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2024

A Rule Language and Feature Model for Educational Timetabling 89

C.1 – CP model

8B 2 (
G
(,'

B
✓ 3%,'

3
(,%
B (1)

8B 2 (
G
(,)

B
✓ 3%,)

3
(,%
B (2)

8? 2 %, 8B 2 3%,(
?

<8=_A>><B%
?
 |G(,'

B
| <0G_A>><B%

? (3)
8? 2 %, 8B 2 3%,(

?

<8=_;42CDA4A%
?
 |G(,)

B
| <0G_;42CDA4A%

? (4)
8? 2 %, 8: 2

B8I4

:
 Õ
A2'

(A 2 G(,'
B

) ⇤ 20?028CH'
A (5)

8B 2 (:
G
(,"

B
+ (G(,⇡

B
� 1) ⇤ |" | + (G(,,

B
� 1) ⇤ |⇡ | ⇤ |" | = G(,�

B (6)
8A 2 ' :

cumulative({8B 2 (| (A 2 G(,'
B

) ⇤ G(,�
B

}, {8B 2 (| ;4=6C⌘(
B
}, 1)

(7)
8? 2 %, 8A 2 3%,'

?
:

cumulative({8B 2 3%,(
?

| (A 2 G(,'
B

) ⇤ G(,�
B

}, {8B 2 3%,(
?

| ;4=6C⌘(
B
}, 1)

(8)
8? 2 % :

gcc({8B 2 3%,(
?

| G(,'
B

}, {8B 2 3%,(
?

| ;4=6C⌘(
B
}, 1)

(9)
5 >A18334=_?4A8>3 ((0) = 8B 2 (0

(G(,�
B

+ ;4=6C⌘(
B
 ⌘1) _ (G(,�

B
� ⌘2) (10)

B0<4_F44:30H((0) = 8B1, B2 2 (0, B1 < B2
G
(,⇡

B1 = G(,⇡
B2 (11)

B0<4_A>><B((0) = 8B1, B2 2 (0, B1 < B2
G
(,'

B1 = G(,'
B2 (12)

38 5 5 4A4=C_A>><B((0) =
all_disjoint({8B 2 (0 | G(,'

B
})

(13)
38 5 5 4A4=C_BC0ACB((0) =

all_different({8B 2 (0 | G(,�
B

})
(14)

B4@D4=243 ((1, (2) = 8B1 2 (1, 8B2 2 (2
G
(,�

B1 +;4=6C⌘
(

B1 G
(,�

B2 (15)
=>_>E4A;0?((0) =

cumulative({8B 2 (0 | G(,�
B

}, {8B 2 (0 | ;4=6C⌘(
B
}, 1)

(16)
Table 11: Constraints and predicates of the CP model.

Proceedings of the 14th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2024

90 C. Behuet et al.

C.2 – ASP model

The ASP model is split in two parts: the first part lists the facts with a small example
(Listing 10.1), the second part is the declaration of rules to solve the given UTP problem
(Listing 10.2).

1 weeks(4). days(12). slot_per_day(1440).grid(480,90,7).
2 courses(1). parts(2).classes(3). sessions(12).
3 room(Salle -1,40). room(Salle -2,20). room(Salle -3,20).
4 course(math). teacher(teacher1).teacher(teacher2).
5 part(math-CM,12,120,5,12,2,1). class(math-CM-1,80).

course_part(math,math-CM).
6 part_class(math-CM,math-CM-1). class_sessions(math-CM-1,1..12).
7 part_teacher(math-CM,(teacher -1;teacher -2)).
8 part_room(math-CM,(salle -1;salle -2;salle -3)).
9 part_days(math-CM,1..5). part_weeks(math-CM,1..12).

10 part_slots(math-CM, (480;570;660;750;840;930)).
11 part_grids("cours-1-pCM",1,1,6).
12 group(group -1,20).group(group -2,20).

class_group(math-CM-1,(group -1;group -2)).
13 session_duration(S,D) :- session(S),session_part(S,P),

part_grids(P,_,D,_).
14 session_group(S,G) :- class_sessions(C,S),class_group(C,G).
15 session_part(S,P) :- session(S), class_session(C,S),

part_class(P,C).
16 session_teacher(S,T) :- session(S), session_part(S,P),

part_teacher(P,T).
17 session_room(S,R) :- session(S), session_part(S,P),

part_room(P,R).
18 sequenced(3,(6;7)).
19 periodic(S1,S2,7200) :- session(S1),session(S2),S2 = S1+1 .
20 disjunctive_room((1..12),R):- room(R,_).
21 disjunctive_teacher((1..12),T):- teacher(T).

Listing 10.1: ASP facts

Proceedings of the 14th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2024

A Rule Language and Feature Model for Educational Timetabling 91

1 1{assigned(S,SL) : session_part(S,P), part_slot(P,SL)}1 :-
session(S).

2 nrPositionRoom(S,1..N) :- session(S), nrRoomMax(S,N).
3 nrRoomMax(S,N) :- session(S), session_part(S,P),

part(P,_,_,_,_,N,_), N > 1.
4 sessionRoomFix(S) :- session(S), not nrRoomMax(S,_).
5 partRoomFix(P) :- part_sessions(P,S), sessionRoomFix(S).
6 partRoomMulti(P) :- part_sessions(P,S), nrRoomMax(S,N).
7 K{assignedrk(S,SL,I) : nrPositionRoom(S,I)}K :- assigned(S,SL),

nrRoomMax(S,K).
8 1{assignedr(S,SL,R,K) : session_room(S,R)}1 :-

assignedrk(S,SL,K).
9 1{assignedr(S,SL,R,1) : session_room(S,R)}1 :- assigned(S,SL),

sessionRoomFix(S).
10 1{assigned(S,SL) : session_part(S,P), part_slot(P,SL)}1 :-

session(S).
11 nrPositionTeacher(S,1..N) :- session(S), nrteacherMax(S,N).
12 nrteacherMax(S,N) :- session(S), session_part(S,P),

part(P,_,_,_,_,_,N), N > 1.
13 sessionTeacherFix(S) :- session(S), not nrteacherMax(S,_).
14 partTeacherFix(P) :- part_sessions(P,S), sessionTeacherFix(S).
15 partTeacherMulti(P) :- part_sessions(P,S), nrteacherMax(S,N).
16 K{assignedtk(S,SL,I) : nrPositionTeacher(S,I)}K :-

assigned(S,SL), nrteacherMax(S,K).
17 :- assignedt(S,_,T,K2), assignedt(S,_,T,K1), K1 != K2.
18

19 :- not {assignedt(S,SL,T,K) : session(S),
disjunctive_teacher(T,S), nrPositionTeacher(S,K) } 1,
slots(SL), teacher(T).

20 :- not {assignedt(S,SL,T,1) : session(S),
disjunctive_teacher(T,S) } 1, slots(SL), teacher(T).

21 :- nrRoomMax(S,_), session_class(S,C), class_headcount(C,N), N
> #sum{V:assignedr(S,_,R,_),room(R,V)}.

22 :- assignedr(S,SL,R,1), room(R,C1),session_class(S,C),
class_headcount(C,N), N > C1.

23 :- not {assigned(S,SL) : session(S),disjunctive_group(S,G)}1,
group(G,_), slots(SL).

24 :- not {assignedr(S,SL,R,K) : session(S),
disjunctive_room(R,S), nrPositionRoom(S,K) } 1, slots(SL),
room(R,_).

25 :- not {assignedr(S,SL,R,1) : session(S), disjunctive_room(R,S)
} 1, slots(SL), room(R,_).

26 :- assignedr(S,_,R,K2), assignedr(S,_,R,K1), K1 != K2.
27 :- periodic(S1,S2,N), assigned(S1,SL1), assigned(S2,SL2), SL2

!= SL1+N.
28 :- sequenced(S1,S2), assigned(S1,SL1), session_part(S1,P),

part_grids(P,_,N,_), assigned(S2,SL2), SL1+N > SL2.
29 sequenced(S1,S2) :- part(P,_,_,_,_,_,_), part_class(P,C),

class_sessions(C,S1), class_sessions(C,S2), S1+1 = S2.

Proceedings of the 14th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2024

92 C. Behuet et al.

30 :- same_slot(S1,S2), assigned(S1,SL1), assigned(S2,SL2), SL1 !=
SL2.

31 :- same_teachers(S1,S2), assignedt(S1,_,T1,K),
assignedt(S2,_,T2,K), T1 != T2.

32 :- same_rooms(S1,S2), assignedr(S1,_,R1,K),
assignedr(S2,_,R2,K), R1 != R2.

33 :- same_rooms(S,S2), nrRoomMax(S,_), not nrRoomMax(S2,_).
34 :- assign_rooms(S1,R1), assignedr(S1,_,R2,_), R1 != R2.
35 :- assign_teachers(S1,T1), assignedt(S1,_,T2,_), T1 != T2.
36 :- serviceTeacher(T,P,N), #count { S,T

:assignedt(S,_,T,_),part_sessions(P,S)} != N.

Listing 10.2: ASP model

Proceedings of the 14th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2024

A Rule Language and Feature Model for Educational Timetabling 93

C.3 – MIP model

8? 2 %, '0 = 3%,'
? ,

8B 2 3%,(
? , 8A 2 ' \ '0 , G(,'B,A = 0

(1)
8? 2 %,) 0 = 3%,)

? ,

8B 2 3%,(
? , 8C 2) \) 0 , G(,)B,C = 0

(2)
8? 2 %, 8B 2 3%,(

?

<8=_A>><B%?
Õ
8A2'

G
(,'
B,A <0G_A>><B%? (3)

8? 2 %, 8B 2 3%,(
?

<8=_;42CDA4A%?
Õ
8C2)

G
(,)
B,C <0G_;42CDA4A%? (4)

8? 2 %, 8: 2
B8I4

:

Õ
A2'

G
(,'
B,A ⇤ 20?028C H'A (5)

8B 2 (:
G
(,"
B + (G(,⇡B � 1) ⇤ |" | + (G(,,B � 1) ⇤ |⇡ | ⇤ |" | = G(,�B (6)

5 >A18334=_?4A8>3 ((0 , �0)= 8B 2 (0 , ⌘ = <8=(�0) ,
B⌘ 2 {0, 1}
(G(,�B � ⌘) � ((;4=6C⌘(B +") ⇤ B⌘ � ")
(⌘ � G(,�B) � ((|�0 | +") ⇤ B⌘ � ")

(7)
5 >A18334=_A>><B ((0 , '0) = 8B 2 (0

8A 2 '0 , G(,'B,A = 0
(8)

B0<4_F44:30H ((0) = 8B1 , B2 2 (0 , B1 < B2
G
(,⇡
B1 � G(,⇡B2 = 0

(9)
B0<4_BC0AC ((0) = 8B1 , B2 2 (0 , B1 < B2

(G(,�B1 � G(,�B2) = 0
(10)

B0<4_A>><B ((0) = 8B1 , B2 2 (0 , B1 < B2
G
(,'
B1 = G(,'B2 (11)

0BB86=_A>><B ((0 , '0) = 8B 2 (0 ,
8A 2 ', G(,'B,A = 1

(12)
38 5 5 4A4=C_A>><B ((0) = 8B1 , B2 2 (0 ,

8A 2 ', G(,'B1 ,A + G
(,'
B2 ,A 1

(13)
?4A8>382 ((0) = 8B1 , B2 2 (0 , B1 < B2 ,

(G(,�B1 + =) = G(,�B2 (14)
B4@D4=243 ((1 , (2) = 8B1 2 (1 , B2 2 (2

(G(,�B1 + ;4=6C⌘(B1) G
(,�
B2 (15)

A4@D8A43_C402⌘4AB ((0 , !⌧) = 8B(0 , 8C 2) , 8f 2 N
(ÕB2% G(,)B,C) f

(16)
=>_>E4A;0?_A>><((0)= 8B1 , B2 2 (0 ,

>A3B1 ,B2 , >A3B2 ,B1 2 {0, 1}, A1A2 2 {0, 1}
A1A2 G(,'B1 , A1A2 G(,'B2 , A1A2 � (G(,'B1 + G(,'B2 � 1)
A1A2 � >A3B1 ,B2 , A1A2 � >A3B2 ,B1
(G(,�B1 � G(,�B2) � ((;4=6C⌘(B2 +") ⇤ >A3B1 ,B2 � ")
(G(,�B2 � G(,�B1) � ((;4=6C⌘(B1 +") ⇤ >A3B2 ,B1 � ")

(17)
=>_>E4A;0?_6A>D? ((0)= 8B1 , B2 2 (0 ,

>A3B1 ,B2 , >A3B2 ,B1 2 {0, 1}, >A3B1 ,B2 + >A3B2 ,B1 = 1
(G(,�B1 � G(,�B2) � ((;4=6C⌘(B2 +") ⇤ >A3B1 ,B2 � ")
(G(,�B2 � G(,�B1) � ((;4=6C⌘(B1 +") ⇤ >A3B2 ,B1 � ")

(18)

Proceedings of the 14th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2024

94 C. Behuet et al.

Appendix D – Complete list of instances

name |' | |) | |* | |(| #ru CP ASP CASP MIP
BT ST BT ST BT ST BT ST

gi5167 87 4 33 81 19 0.86 0.97 55.41 1.93 0.34 0.06 0.04 0.11
gi678 60 101 30 117 22 0.86 0.89 48.04 2.61 0.60 0.10 0.13 0.21
gi8201 82 4 33 118 23 0.86 1.86 15.71 0.08 0.30 0.23 0.17 0.26
gi8445 83 12 45 110 25 0.93 2.44 54.78 1.39 0.62 0.05 0.21 0.33
gi5301 99 96 55 139 33 0.85 483.59 68.70 0.36 0.40 0.12 0.22 0.49
gi9456 102 15 73 186 27 1.02 2.74 190.18 15.01 2.35 0.28 0.29 0.52
gi42910 84 96 110 163 30 1.03 1.87 146.45 1.25 0.49 0.18 0.16 0.30
gi29910 100 33 49 163 33 1.03 11.14 129.40 4.17 1.10 0.14 0.43 0.83
gi8601 104 97 143 200 16 0.99 0.98 42.49 4.93 0.40 0.17 0.08 0.14
gi6012 125 97 65 175 36 1.06 2.66 296.48 11.96 1.38 0.66 0.25 0.94
gi6101 85 100 48 212 40 0.99 1.47 131.63 8.63 0.78 0.38 0.18 0.36
gi4867 96 21 62 211 30 0.94 2.10 214.09 7.74 2.38 0.23 0.97 1.91
gi1045 108 99 50 175 44 0.93 7.60 84.57 2.49 0.98 0.20 0.26 0.44
gi2123 128 98 61 240 29 1.03 1.87 333.32 36.93 6.69 0.37 1.09 1.37
gi8056 104 4 66 223 37 1.06 5.01 221.33 7.81 3.31 0.57 1.61 2.52
gi5534 87 22 194 189 24 1.07 3.90 71.02 2.00 0.87 0.12 0.73 1.72
gi2501 123 98 151 245 23 1.00 1.50 143.26 28.74 1.53 0.49 0.22 0.38
gi223 102 6 135 219 30 1.01 4.09 87.73 1.52 0.89 0.19 1.88 2.79
gi1378 95 37 68 244 46 1.15 3.98 227.07 4.96 2.03 0.43 3.21 4.64
gi8467 115 24 67 264 46 1.30 3.33 297.07 10.62 4.23 0.57 2.48 3.87
gi7967 114 101 206 192 15 1.16 4.37 406.36 24.56 3.42 0.12 0.78 1.44
gi9123 78 4 66 325 38 1.15 213.82 212.85 17.56 1.51 0.78 1.81 2.81
gi9434 99 4 65 334 38 0.93 1.73 208.71 29.71 1.77 1.22 0.59 1.30
gi2245 110 105 132 313 30 1.08 2.25 134.36 16.68 2.01 0.26 1.16 1.94
gi8478 90 96 138 295 27 1.09 3.63 475.86 19.95 4.69 0.23 4.18 6.00
gi9334 107 14 86 341 30 1.03 2.24 162.71 30.17 4.54 1.43 1.63 2.64
gi745 107 105 91 352 38 1.10 1.95 60.29 7.10 0.99 3.89 0.34 0.54
gi1245 132 5 152 275 30 1.19 4.44 287.89 13.60 3.30 0.81 3.93 5.81
gi27910 97 100 114 369 34 1.07 59.67 131.10 15.43 1.53 1.01 0.98 1.74
gi5501 83 17 123 361 31 1.03 2.20 71.03 3.26 0.81 1.03 1.39 2.62
gi1867 86 39 91 405 47 1.08 5.22 77.95 12.20 1.99 4.64 2.07 2.95
gi4067 84 95 154 363 21 1.17 3.25 118.31 12.65 1.01 0.94 0.39 0.70
gi5856 78 10 114 324 50 1.12 5.15 182.23 6.41 2.02 0.40 5.19 8.20
gi9323 85 8 194 335 39 1.25 3.81 331.39 11.30 3.40 0.44 6.08 9.02
gi8956 102 97 162 419 26 1.25 11.72 527.65 33.91 1.26 1.99 1.79 2.84
gi8023 93 30 150 392 38 1.09 5.48 116.28 15.60 0.84 1.54 0.56 1.20
gi6889 94 98 66 522 55 1.24 3.64 4.33 10.41 5.76 6.45
gi3167 89 95 194 422 27 1.14 3.42 283.10 32.00 3.94 1.41 2.93 3.85
gi878 87 98 97 437 41 1.18 3.01 346.90 72.95 4.74 1.75 2.05 2.69
gi9189 82 27 319 362 52 1.36 7.84 395.76 14.18 3.58 3.39 6.88 10.05
gi1578 127 99 195 461 31 1.14 2.35 319.65 90.44 2.56 2.16 0.80 1.44
gi8678 83 24 261 369 28 1.24 8.08 525.14 38.13 3.69 4.99 10.32 15.92
gi7445 104 7 196 423 58 1.24 5.02 599.88 41.23 12.32 1.21 19.15 28.57
gi3934 104 96 159 623 64 1.32 4.56 613.68 142.05 5.51 2.02 5.84 8.20
gi5378 88 21 158 665 59 1.32 4.68 726.97 37.24 2.96 3.19 3.73 6.07
gi6745 98 98 150 624 65 1.35 7.20 634.56 125.36 13.92 4.53 10.29 14.84
gi4389 65 6 174 662 33 1.47 4.62 693.40 210.58 14.91 4.93 7.66 10.23
gi6278 99 8 192 588 40 1.22 17.32 491.72 183.93 13.94 3.68 6.37 9.01
gi7923 96 96 155 590 45 1.32 6.38 528.75 76.06 3.51 2.98 5.72 8.36
gi7867 118 101 211 617 59 1.51 8.89 1058.61 100.78 22.35 1.43 15.72 22.05
gi30910 104 9 190 523 49 1.22 8.45 472.29 22.97 7.81 1.21 21.71 32.06
gi4323 120 23 170 629 39 1.40 14.42 498.26 117.77 15.58 2.82 11.04 16.85
gi8745 108 105 249 632 34 1.38 8.38 610.86 156.25 20.13 3.22 13.08 20.08
gi2401 122 104 152 696 29 1.41 4.97 6.31 4.81 5.45 7.72
gi2867 102 11 154 783 38 1.46 4.74 6.41 11.81 6.53 10.06
gi4245 67 46 187 707 53 1.34 8.32 386.84 23.77 3.00 3.73 12.49 17.63
gi6134 113 105 152 748 35 1.40 8.56 437.44 109.94 3.17 13.31 4.95 7.36
gi8145 96 100 268 477 42 1.21 36.84 196.38 8.18 3.59 2.05 11.62 18.11
gi4278 95 47 251 811 20 1.30 4.93 645.57 25.87 1.75 8.60 1.08 2.09
gi7156 125 98 486 711 23 1.41 9.81 491.04 206.26 19.09 2.32 13.48 14.97
gi5145 99 96 154 1017 101 1.43 6.75 2.86 36.03 0.07 0.14

(. . .)

Proceedings of the 14th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2024

A Rule Language and Feature Model for Educational Timetabling 95

name |' | |) | |* | |(| #ru CP ASP CASP MIP
BT ST BT ST BT ST BT ST

(continued)
gi1067 113 56 376 716 56 1.39 9.23 255.67 22.65 7.37 4.12 22.45 33.70
gi3367 98 45 539 836 99 1.48 8.44 372.95 16.04 5.09 6.10 22.19 94.02
gi30910 104 95 361 810 78 1.62 13.50 825.29 36.13 6.77 5.40 24.78 29.16
gi1778 112 10 400 880 109 1.66 11.05 46.16 15.64 65.96 107.49
gi7267 89 98 298 1295 30 1.67 10.51 33.20 29.72 35.02 258.28
gi77910 103 97 422 2120 102 2.17 12.58 114.51 94.53 96.28 141.20
gi9912 84 103 562 1956 172 2.08 47.84 10.48 1426.66
gi2767 92 21 501 2003 78 2.02 30.48 128.21 57.11 130.51 7995.32
gi7034 102 100 454 2268 162 2.07 20.72 10.70 104.37 30.92 52.49
gi9023 144 103 1247 1980 200 2.49 24.85 142.35 41.64 258.11 799.06
gi7723 89 55 432 2745 152 2.50 28.02 79.88 218.58 157.51 405.68
gi5567 94 94 1770 6180 562 4.75 381.78 122.89 3548.58
gi467 90 61 1982 8886 383 4.61 33.59 92.65 2609.97
gi2934 106 73 2111 9168 515 5.34 33.87 92.25 2469.69

Table 12: List of instances.

References

1. Scheduling zoo, http://schedulingzoo.lip6.fr/
2. Dataset Generator ITC-2007 (2022), https://cdlab-artis.dbai.tuwien.ac.at/papers/cb-ctt/
3. RobinX three field (2022), https://robinxval.ugent.be/RobinX/threeField.php
4. UTP dataset (2024), https://ua-usp.github.io/timetabling/instances
5. Abdullah, S., Turabieh, H.: On the use of multi neighbourhood structures within a tabu-based

memetic approach to university timetabling problems. Information Sciences 191, 146–168
(2012). https://doi.org/https://doi.org/10.1016/j.ins.2011.12.018, https://www.sciencedirect.
com/science/article/pii/S0020025511006670, data Mining for Software Trustworthiness

6. Amintoosi, M., Haddadnia, J.: Feature selection in a fuzzy student sectioning algorithm. In:
4th International Conference on the Practice and Theory of Automated (PATAT) 2004. pp.
147–160 (08 2004). https://doi.org/10.1007/11593577_9

7. Banbara, M., Inoue, K., Kaufmann, B., Okimoto, T., Schaub, T., Soh, T., Tamura, N., Wanko,
P.: teaspoon: solving the curriculum-based course timetabling problems with answer set
programming. Ann. Oper. Res. 275(1), 3–37 (2019). https://doi.org/10.1007/s10479-018-2
757-7

8. Baral, C.: Knowledge representation, reasoning and declarative problem solving. Cambridge
university press (2003)

9. Barichard, V., Behuet, C., Genest, D., Legeay, M., Lesaint, D.: A Constraint Language For
University Timetabling Problems. In: 13th International Conference on the Practice and
Theory of Automated (PATAT) 2022. Louvain, Belgium (Aug 2022), https://hal.science/ha
l-04073981

10. Battistutta, M., Ceschia, S., De Cesco, F., Di Gaspero, L., Schaerf, A., Topan, E.: Local
search and constraint programming for a real-world examination timetabling problem. In:
Hebrard, E., Musliu, N. (eds.) Integration of Constraint Programming, Artificial Intelligence,
and Operations Research. pp. 69–81. Springer International Publishing, Cham (2020)

11. Bellio, R., Ceschia, S., Di Gaspero, L., Schaerf, A.: Two-stage multi-neighborhood simulated
annealing for uncapacitated examination timetabling. Computers & Operations Research
132, 105300 (2021). https://doi.org/https://doi.org/10.1016/j.cor.2021.105300, https:
//www.sciencedirect.com/science/article/pii/S0305054821000927

12. Bettinelli, A., Cacchiani, V., Roberti, R., toth, P.: An overview of curriculum-based course
timetabling. TOP 23, 313–349 (2015). https://doi.org/https://doi.org/10.1007/s11750-015-0
366-z

Proceedings of the 14th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2024

http://schedulingzoo.lip6.fr/
https://cdlab-artis.dbai.tuwien.ac.at/papers/cb-ctt/
https://robinxval.ugent.be/RobinX/threeField.php
https://ua-usp.github.io/timetabling/instances
https://doi.org/https://doi.org/10.1016/j.ins.2011.12.018
https://doi.org/https://doi.org/10.1016/j.ins.2011.12.018
https://www.sciencedirect.com/science/article/pii/S0020025511006670
https://www.sciencedirect.com/science/article/pii/S0020025511006670
https://doi.org/10.1007/11593577_9
https://doi.org/10.1007/11593577_9
https://doi.org/10.1007/s10479-018-2757-7
https://doi.org/10.1007/s10479-018-2757-7
https://doi.org/10.1007/s10479-018-2757-7
https://doi.org/10.1007/s10479-018-2757-7
https://hal.science/hal-04073981
https://hal.science/hal-04073981
https://doi.org/https://doi.org/10.1016/j.cor.2021.105300
https://doi.org/https://doi.org/10.1016/j.cor.2021.105300
https://www.sciencedirect.com/science/article/pii/S0305054821000927
https://www.sciencedirect.com/science/article/pii/S0305054821000927
https://doi.org/https://doi.org/10.1007/s11750-015-0366-z
https://doi.org/https://doi.org/10.1007/s11750-015-0366-z
https://doi.org/https://doi.org/10.1007/s11750-015-0366-z
https://doi.org/https://doi.org/10.1007/s11750-015-0366-z

96 C. Behuet et al.

13. Cambazard, H., Hebrard, E., O’Sullivan, B., Papadopoulos, A.: Local search and constraint
programming for the post enrolment-based course timetabling problem. Ann. Oper. Res.
194(1), 111–135 (2012). https://doi.org/10.1007/s10479-010-0737-7

14. Carter, M.W., Laporte, G., Lee, S.Y.: Examination timetabling: Algorithmic strategies and
applications. The Journal of the Operational Research Society 47(3), 373–383 (1996), http:
//www.jstor.org/stable/3010580

15. Caselli, G., Delorme, M., Iori, M.: Integer linear programming for the tutor alloca-
tion problem: A practical case in a british university. Expert Systems with Applications
187, 115967 (2022). https://doi.org/https://doi.org/10.1016/j.eswa.2021.115967,
https://www.sciencedirect.com/science/article/pii/S095741742101318X

16. Castro, C., Manzano, S.: Variable and Value Ordering When Solving Balanced Academic
Curriculum Problems. ARXIV (Nov 2001)

17. Chen, M., Sze, S., Goh, S.L., Sabar, N., Kendall, G.: A Survey of University Course
Timetabling Problem: Perspectives, Trends and Opportunities. IEEE Access PP, 1–1 (Jul
2021). https://doi.org/10.1109/ACCESS.2021.3100613

18. Chiarandini, M., Di Gaspero, L., Gualandi, S., Schaerf, A.: The balanced academic curriculum
problem revisited. Journal of Heuristics 18(1), 119–148 (Feb 2012). https://doi.org/10.1007/
s10732-011-9158-2, https://doi.org/10.1007/s10732-011-9158-2

19. Czarnecki, K., Østerbye, K., Völter, M.: Generative programming. In: Núñez, J.H., Moreira,
A.M.D. (eds.) Object-Oriented Technology, ECOOP 2002 Workshops and Posters, Málaga,
Spain, June 10-14, 2002, Proceedings. Lecture Notes in Computer Science, vol. 2548, pp.
15–29. Springer (2002). https://doi.org/10.1007/3-540-36208-8_2, https://doi.org/10.1007/
3-540-36208-8_2

20. David, S.: Optimal student sectioning on mandatory courses with various sections numbers.
Annals of operations research 275(1), 209–221 (2019)

21. Demirovic, E., Musliu, N.: Modeling high school timetabling as partial weighted maxsat. In:
LaSh 2014: The 4th Workshop on Logic and Search (a SAT/ICLP workshop at FLoC 2014),
July 18, Vienna, Austria (2014)

22. Demirovic, E., Stuckey, P.J.: Constraint programming for high school timetabling: A
scheduling-based model with hot starts. In: van Hoeve, W.J. (ed.) Integration of Constraint
Programming, Artificial Intelligence, and Operations Research - 15th International Confer-
ence, CPAIOR 2018, Delft, The Netherlands, June 26-29, 2018, Proceedings. Lecture Notes
in Computer Science, vol. 10848, pp. 135–152. Springer (2018). https://doi.org/10.1007/97
8-3-319-93031-2_10, https://doi.org/10.1007/978-3-319-93031-2_10

23. Demirović, E., Musliu, N.: Maxsat-based large neighborhood search for high school
timetabling. Computers & Operations Research 78 (02 2017). https://doi.org/10.1016/j.
cor.2016.08.004

24. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Multi-shot asp solving with clingo.
Theory and Practice of Logic Programming 19(1), 27–82 (2019). https://doi.org/10.1017/S1
471068418000054

25. Gogos, C., Dimitsas, A., Nastos, V., Valouxis, C.: Some insights about the uncapacitated
examination timetabling problem. In: 2021 6th South-East Europe Design Automation, Com-
puter Engineering, Computer Networks and Social Media Conference (SEEDA-CECNSM).
pp. 1–7 (2021). https://doi.org/10.1109/SEEDA-CECNSM53056.2021.9566258

26. Goh, S.L., Kendall, G., Sabar, N.R.: Improved local search approaches to solve the post
enrolment course timetabling problem. European Journal of Operational Research 261(1),
17–29 (2017). https://doi.org/https://doi.org/10.1016/j.ejor.2017.01.040, https://www.scienc
edirect.com/science/article/pii/S0377221717300759

27. Graham, R.L., Lawler, E.L., Lenstra, J.K., Kan, A.R.: Optimization and approximation in
deterministic sequencing and scheduling: a survey. In: Annals of discrete mathematics, vol. 5,
pp. 287–326. Elsevier (1979). https://doi.org/10.1016/S0167-5060(08)70356-X

Proceedings of the 14th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2024

https://doi.org/10.1007/s10479-010-0737-7
https://doi.org/10.1007/s10479-010-0737-7
http://www.jstor.org/stable/3010580
http://www.jstor.org/stable/3010580
https://doi.org/https://doi.org/10.1016/j.eswa.2021.115967
https://doi.org/https://doi.org/10.1016/j.eswa.2021.115967
https://www.sciencedirect.com/science/article/pii/S095741742101318X
https://doi.org/10.1109/ACCESS.2021.3100613
https://doi.org/10.1109/ACCESS.2021.3100613
https://doi.org/10.1007/s10732-011-9158-2
https://doi.org/10.1007/s10732-011-9158-2
https://doi.org/10.1007/s10732-011-9158-2
https://doi.org/10.1007/s10732-011-9158-2
https://doi.org/10.1007/s10732-011-9158-2
https://doi.org/10.1007/3-540-36208-8%5C_2
https://doi.org/10.1007/3-540-36208-8%5C_2
https://doi.org/10.1007/3-540-36208-8_2
https://doi.org/10.1007/3-540-36208-8_2
https://doi.org/10.1007/978-3-319-93031-2%5C_10
https://doi.org/10.1007/978-3-319-93031-2%5C_10
https://doi.org/10.1007/978-3-319-93031-2%5C_10
https://doi.org/10.1007/978-3-319-93031-2%5C_10
https://doi.org/10.1007/978-3-319-93031-2_10
https://doi.org/10.1016/j.cor.2016.08.004
https://doi.org/10.1016/j.cor.2016.08.004
https://doi.org/10.1016/j.cor.2016.08.004
https://doi.org/10.1016/j.cor.2016.08.004
https://doi.org/10.1017/S1471068418000054
https://doi.org/10.1017/S1471068418000054
https://doi.org/10.1017/S1471068418000054
https://doi.org/10.1017/S1471068418000054
https://doi.org/10.1109/SEEDA-CECNSM53056.2021.9566258
https://doi.org/10.1109/SEEDA-CECNSM53056.2021.9566258
https://doi.org/https://doi.org/10.1016/j.ejor.2017.01.040
https://doi.org/https://doi.org/10.1016/j.ejor.2017.01.040
https://www.sciencedirect.com/science/article/pii/S0377221717300759
https://www.sciencedirect.com/science/article/pii/S0377221717300759
https://doi.org/10.1016/S0167-5060(08)70356-X
https://doi.org/10.1016/S0167-5060(08)70356-X

A Rule Language and Feature Model for Educational Timetabling 97

28. Gurobi Optimization, LLC: Gurobi Optimizer Reference Manual (2023), https://www.guro
bi.com

29. ITC19: International Timetabling Competition (2019), https://www.itc2019.org/
30. Jawa Bendi, K., Junaidi, H.: simulated annealing approach for university timetable problem.

Jurnal Ilmiah Matrik 21 (12 2019). https://doi.org/10.33557/jurnalmatrik.v21i3.723
31. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, A.: Feature-oriented domain analysis

(foda) feasibility study (01 1990)
32. Kiefer, A., Hartl, R.F., Schnell, A.: Adaptive large neighborhood search for the curriculum-

based course timetabling problem. Annals of Operations Research 252, 255 – 282 (2016),
https://api.semanticscholar.org/CorpusID:20405903

33. Kingston, J.H.: Repairing high school timetables with polymorphic ejection chains. Annals
of Operations Research 239, 119–134 (2016)

34. Koné, O., Artigues, C., Lopez, P., Mongeau, M.: Event-based milp models for resource-
constrained project scheduling problems. Computers & Operations Research 38(1), 3–13
(2011)

35. Kristiansen, S., Sørensen, M., Stidsen, T.: Integer programming for the generalized high
school timetabling problem. Journal of Scheduling 18 (08 2015). https://doi.org/10.1007/s1
0951-014-0405-x

36. Lemos, A., Monteiro, P., Lynce, I.: Disruptions in timetables: A case study at universidade
de lisboa. Journal of Scheduling (02 2021). https://doi.org/10.1007/s10951-020-00666-3

37. Lewis, R., Paechter, B., Mccollum, B.: Post enrolment based course timetabling: A description
of the problem model used for track two of the second international timetabling competi-
tion. Cardiff University, Cardiff Business School, Accounting and Finance Section, Cardiff
Accounting and Finance Working Papers (01 2007)

38. Lindahl, M., Stidsen, T., Sørensen, M.: Quality recovering of university timetables. European
Journal of Operational Research 276(2), 422 – 435 (2019). https://doi.org/https://doi.org/10
.1016/j.ejor.2019.01.026, http://www.sciencedirect.com/science/article/pii/S03772217193
00451

39. Lü, Z., Hao, J.K.: Adaptive tabu search for course timetabling. European Journal of Opera-
tional Research 200, 235–244 (01 2010). https://doi.org/10.1016/j.ejor.2008.12.007

40. Mccollum, B., McMullan, P., Paechter, B., Lewis, R., Schaerf, A., Di Gaspero, L., Parkes,
A., Qu, R., Burke, E.: Setting the research agenda in automated timetabling: The second
international timetabling competition. INFORMS Journal on Computing 22, 120–130 (02
2010). https://doi.org/10.1287/ĳoc.1090.0320

41. Müller, T., Rudová, H., Müllerová, Z.: University course timetabling and International
Timetabling Competition 2019. In: Burke, E.K., Di Gaspero, L., McCollum, B., Musliu,
N., Özcan, E. (eds.) Proceedings of the 12th International Conference on the Practice and
Theory of Automated Timetabling (PATAT-2018). pp. 5–31 (2018)

42. Müller, T., Murray, K.: Comprehensive approach to student sectioning. Annals of Operations
Research 181, 249–269 (Dec 2010). https://doi.org/10.1007/s10479-010-0735-9

43. Nagata, Y.: Random partial neighborhood search for the post-enrollment course timetabling
problem. Computers & Operations Research 90, 84–96 (2018). https://doi.org/https://doi.or
g/10.1016/j.cor.2017.09.014, https://www.sciencedirect.com/science/article/pii/S0305054
817302447

44. Nešić, D., Krüger, J., Stănciulescu, u., Berger, T.: Principles of feature modeling. In:
Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineer-
ing Conference and Symposium on the Foundations of Software Engineering. p. 62–73.
ESEC/FSE 2019, Association for Computing Machinery, New York, NY, USA (2019).
https://doi.org/10.1145/3338906.3338974, https://doi.org/10.1145/3338906.3338974

45. Nysret Musliu, E.D.: Solving high school timetabling with satisability modulo theories (08
2014), https://api.semanticscholar.org/CorpusID:14768396

Proceedings of the 14th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2024

https://www.gurobi.com
https://www.gurobi.com
https://www.itc2019.org/
https://doi.org/10.33557/jurnalmatrik.v21i3.723
https://doi.org/10.33557/jurnalmatrik.v21i3.723
https://api.semanticscholar.org/CorpusID:20405903
https://doi.org/10.1007/s10951-014-0405-x
https://doi.org/10.1007/s10951-014-0405-x
https://doi.org/10.1007/s10951-014-0405-x
https://doi.org/10.1007/s10951-014-0405-x
https://doi.org/10.1007/s10951-020-00666-3
https://doi.org/10.1007/s10951-020-00666-3
https://doi.org/https://doi.org/10.1016/j.ejor.2019.01.026
https://doi.org/https://doi.org/10.1016/j.ejor.2019.01.026
https://doi.org/https://doi.org/10.1016/j.ejor.2019.01.026
https://doi.org/https://doi.org/10.1016/j.ejor.2019.01.026
http://www.sciencedirect.com/science/article/pii/S0377221719300451
http://www.sciencedirect.com/science/article/pii/S0377221719300451
https://doi.org/10.1016/j.ejor.2008.12.007
https://doi.org/10.1016/j.ejor.2008.12.007
https://doi.org/10.1287/ijoc.1090.0320
https://doi.org/10.1287/ijoc.1090.0320
https://doi.org/10.1007/s10479-010-0735-9
https://doi.org/10.1007/s10479-010-0735-9
https://doi.org/https://doi.org/10.1016/j.cor.2017.09.014
https://doi.org/https://doi.org/10.1016/j.cor.2017.09.014
https://doi.org/https://doi.org/10.1016/j.cor.2017.09.014
https://doi.org/https://doi.org/10.1016/j.cor.2017.09.014
https://www.sciencedirect.com/science/article/pii/S0305054817302447
https://www.sciencedirect.com/science/article/pii/S0305054817302447
https://doi.org/10.1145/3338906.3338974
https://doi.org/10.1145/3338906.3338974
https://doi.org/10.1145/3338906.3338974
https://api.semanticscholar.org/CorpusID:14768396

98 C. Behuet et al.

46. Ostrowski, M.: Modern constraint answer set solving. Ph.D. thesis, Universität Potsdam
(2018)

47. Árton P. Dorneles, de Araújo, O.C., Buriol, L.S.: A fix-and-optimize heuristic for the high
school timetabling problem. Computers & Operations Research 52, 29–38 (2014). https:
//doi.org/https://doi.org/10.1016/j.cor.2014.06.023, https://www.sciencedirect.com/science/
article/pii/S0305054814001816

48. Post, G., Ahmadi, S., Daskalaki, S., Kingston, J., Kyngas, J., Nurmi, K., Post, G., Ahmadi,
S., Daskalaki, S., Kyngas, J., Ranson, D.: An XML format for benchmarks in High School
Timetabling. Annals of Operations Research 194, 385–397 (Apr 2012). https://doi.org/10.1
007/s10479-010-0699-9

49. Prud’homme, C., Fages, J.G.: Choco-solver: A java library for constraint programming.
Journal of Open Source Software 7(78), 4708 (2022). https://doi.org/10.21105/joss.04708,
https://doi.org/10.21105/joss.04708

50. Rubio, J.M., Palma, W., Rodriguez, N., Soto, R., Crawford, B., Paredes, F., Cabrera, G.: Solv-
ing the Balanced Academic Curriculum Problem Using the ACO Metaheuristic. Mathematical
Problems in Engineering 2013, e793671 (Dec 2013). https://doi.org/10.1155/2013/793671,
https://www.hindawi.com/journals/mpe/2013/793671/, publisher: Hindawi

51. Say Leng Goh, G.K., Sabar, N.R.: Simulated annealing with improved reheating and learning
for the post enrolment course timetabling problem. Journal of the Operational Research
Society 70(6), 873–888 (2019). https://doi.org/10.1080/01605682.2018.1468862, https:
//doi.org/10.1080/01605682.2018.1468862

52. Schindl, D.: Optimal student sectioning on mandatory courses with various sections numbers.
Annals of Operations Research 275 (04 2019). https://doi.org/10.1007/s10479-017-2621-1

Proceedings of the 14th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2024

https://doi.org/https://doi.org/10.1016/j.cor.2014.06.023
https://doi.org/https://doi.org/10.1016/j.cor.2014.06.023
https://doi.org/https://doi.org/10.1016/j.cor.2014.06.023
https://doi.org/https://doi.org/10.1016/j.cor.2014.06.023
https://www.sciencedirect.com/science/article/pii/S0305054814001816
https://www.sciencedirect.com/science/article/pii/S0305054814001816
https://doi.org/10.1007/s10479-010-0699-9
https://doi.org/10.1007/s10479-010-0699-9
https://doi.org/10.1007/s10479-010-0699-9
https://doi.org/10.1007/s10479-010-0699-9
https://doi.org/10.21105/joss.04708
https://doi.org/10.21105/joss.04708
https://doi.org/10.21105/joss.04708
https://doi.org/10.1155/2013/793671
https://doi.org/10.1155/2013/793671
https://www.hindawi.com/journals/mpe/2013/793671/
https://doi.org/10.1080/01605682.2018.1468862
https://doi.org/10.1080/01605682.2018.1468862
https://doi.org/10.1080/01605682.2018.1468862
https://doi.org/10.1080/01605682.2018.1468862
https://doi.org/10.1007/s10479-017-2621-1
https://doi.org/10.1007/s10479-017-2621-1

