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Abstract. In a flow shop, jobs are serially processed on a set of machines, and
the machine order is the same for all the jobs. In a permutation flow shop, there
is an additional assumption that the order in which jobs enter the machines is
the same on each machine. While the meaning of "permutation" is clear for a
flow shop, it is more ambiguous for a reentrant flow shop. In a reentrant flow
shop, jobs are processed on some machines more than once. Then, there are
several ways to understand the meaning of permutation. We indicate that different
researchers use the term "permutation" for different assumptions. Our effort is to
clear up this ambiguity. This is significant for definition clarity when studying the
reentrant scenario. Moreover, the various definitions influence proposed heuristics
for solving the problem and, by that, also influence the quality of the resulting
solutions. We show this through basic examples as a first step towards more
extensive experiments.
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1 Introduction

Scheduling in the manufacturing industry involves assigning jobs to machines and
determining their order to optimize some criteria [1,22]. Many manufacturing layouts
take the form of flow shops in which jobs progress from one machine to the next machine
in a serial order without ever visiting the same machine twice [22]. Flow shop problems
that do not allow sequence changes between machines are called permutation flow
shops (PFS). In this class of problems, jobs are processed by a series of machines in
precisely the same order [25]. A PFS problem is thus characterized by the same machine
order for all jobs (flow shop) and the same job order for each machine (permutation).

In classical scheduling, it is typically assumed that each job visits any given machine
at most once [1]. Contrary to that, many practical scenarios are of reentrant shops,
in which a job may be processed by some of the machines several times [9]. In some
industries, including signal processing and semiconductor wafer manufacturing, product
design may call for jobs to recirculate or revisit a stage in the manufacturing process
[24]. Reentrant shops can also be found in manufacturing facilities such as textile fabric
manufacturing processes and mirror manufacturing systems [30]. A reentrant flow
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shop (RFS) problem is distinguished from the classical flow shop problem by allowing
jobs to be processed repeatedly at some machines.

An RFS is characterized by a reentrant pattern q noting the machine order for the
jobs. Explicitly, let q8 be the 8-th stage visited by each job, where q8 2 {1, 2, . . . ,<}. The
reentrant pattern q = (q1,q2,...,q |q | ) is the sequence in which jobs visit the machines
in the shop. The reentrant property occurs when at two stages in the sequence, q8 = q 9
for 8 < 9 . In maximal generality, the reentrant pattern determined by the manufacturing
process may be arbitrary, provided all jobs follow the same sequence (i.e., flow shop)
and at least one machine is revisited. Nonetheless, there are some special reentrant
patterns that commonly appear in real-life manufacturing processes. One such pattern
is the cyclic pattern [10], also called RFS with full loops [30]. In a cyclic-reentrant flow
shop, all the jobs make ; passes (; > 1) through all the machines, and each pass goes
through all the machines in order 1, 2, . . . ,<. For ; = 2 as an example, the obtained
pattern is q = (1, 2, . . . ,<, 1, 2, . . . ,<). This work assumes a cyclic pattern for the
RFS. An example of cyclic RFS is in the assembly of electronic circuits stacked on top
of each other [10]; each time a new circuit is connected, the same set of machines is
visited. The cyclic pattern is extensively studied also because it is possible to describe
any reentrant pattern by setting the processing time on some machines in some passes
to be zero. Nevertheless, for reasons of clarity, we hereby consider non-zero processing
times in each machine at each pass, that is, a true cyclic RFS.

An RFS problem with permutation characteristics is known as a reentrant per-
mutation flow shop (RPFS) problem. The main contribution of this article regards the
notion of permutation within the RPFS context. We claim that the use of the word
"permutation" in RPFS takes on several different meanings, which naturally may create
confusion. We offer a clear way to describe the different definitions of RPFS. We do not
propose to abolish the various definitions but rather propose to address several permu-
tation types. In the proposed approach, four different types of RPFS are obtained; in the
literature, we found that researchers use three of them under the name RPFS.

The four permutation types are described in Section 2, together with a literature
review mainly concerning RPFS with a cyclic pattern. In Section 3, we show that the
different permutation types have meaning not only in terms of the clarity of represen-
tation but also from the point of view of heuristic construction. We consider Palmer’s
slope heuristic [20] for each of the four presented types and demonstrate it through
simple examples. A discussion in Section 4 concludes the paper.

2 RPFS Permutation Types

Consider an RFS problem with a cyclic reentrant pattern. It consists of = jobs, <
machines, and ; levels. A level in a cyclic pattern is a pass of a job in all the machines in the
order 1, 2, . . . ,<. A level is also called a cycle or loop. A specific level of a specific job is
also called a sub-job [8]. To show the ambiguity regarding the meaning of "permutation"
in the RPFS literature, we present the following quotes that use contradicting definitions.

Definition 1: “Every job can be decomposed into several layers each of which starts on
"1 and finishes on "<. In the RFS case, if the job ordering is the same on any machine
at each layer, then no passing is said to be allowed, since no job is allowed to pass any
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former job. The RFS scheduling problem in which no passing is allowed, is called a
RPFS problem.” — quote taken from [6].

Definition 2: “Our considered m-machine reentrant permutation flow shop scheduling
problem (MRPFSSP) can be viewed as a special kind of non reentrant flow shop schedul-
ing problem (FSSP). If each job is decomposed into ! sub-jobs and the reentrant-based
precedence constraints among all sub-jobs are satisfied, MRPFSSP can be treated as an
imaginary FSSP with =! sub-jobs.” — quote taken from [23].

The first definition is more restrictive than the second. There is a third, intermediate
definition used for general reentrant patterns.

Definition 3: “Pan and Chen (2003) developed three mixed integer models for the
reentrant flow-shop problem . . . In these models, the job sequence for every machine is
the same in each level and it is not allowed that higher levels preempt lower ones . . . Lee
et al. (2011) relaxed the constraints of level permutation set by Pan and Chen (2003) in
order to get better objective values. This relaxation makes it possible to mix job levels,
i.e., jobs on higher levels can be processed on a machine k before jobs on a lower level.”
— quote taken from [15].

Table 1 presents a summary of the literature regarding RPFS with the cyclic pattern
over the last two decades. The table shows that the definitions are used interchangeably
over the years and are all referred to as RPFS. This creates an ambiguity that we aim to
correct. It is noteworthy that:

– The majority of studies used Definition 1.
– Most studies that applied Definition 2 were related to the specific case of two-

machine problems.
– Only a few studies used Definition 3.

A key insight that can be deduced from the above definitions, is that to properly handle
the permutation characteristic in RFS problems, two issues should be considered:

1. Job passing: Is it allowed for the job order to be different at different levels?
2. Level passing: Is it allowed for level : of job 9 to be scheduled before level : 0 of

another job 9 0 where : 0 < :?

For Definition 1, the answer to both questions is negative: there is a single job order
and this order is kept in all the levels. In addition, level passing is forbidden, i.e., level
: + 1 of a job does not precede level : of a different job. We suggest to term this RPFS
type as Passing Prohibited (PP). This term has a similar meaning to the "no passing"
term used with respect to RPFS, for example, in [21,6].

For Definition 2, the answer to both questions is positive: the jobs are practically
divided into sub-jobs, and the order of sub-jobs is not restricted as long as precedence
constraints are kept, i.e., a level : + 1 of a job does not precede level : of the same job.
We suggest to term this RPFS type as Passing Allowed (PA).

For the intermediate Definition 3, the answer to the first question is negative; a
single job order is kept in all the levels. However, the answer to the second question is
positive, i.e., level passing is allowed. We suggest to term this RPFS type as Job Passing
Prohibited (JPP).
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Year Reference Permutation
definition Objective Notes

2003 [21] Definition 1, PP Makespan
2006 [3] Definition 1, PP Makespan
2007 [5] Definition 1, PP Makespan
2007 [7] Definition 2, PA Makespan Two-machine problem
2008 [6] Definition 1, PP Makespan
2008 [17] Definition 2, PA Makespan Two-machine problem
2008 [8] Definition 2, PA Makespan
2009 [4] Definition 1, PP Makespan
2013 [15] Definition 3, JPP Makespan Not specific to cyclic RFS
2014 [16] Definition 2, PA Total tardiness Two-machine problem
2014 [29] Definition 1, PP Makespan
2016 [28] Definition 1, PP Makespan
2017 [23] Definition 1, PP Makespan
2018 [27] Definition 1, PP Makespan

2021 [24] Definition 1, PP
Makespan, average
completion times,
total tardiness

Multi-objective performance measure

2023 [11] Definition 1, PP Makespan, maximum
tardiness Bi-objective performance measure

2023 [18] Definition 2, PA Value-at-risk of the
makespan

Two-machine problem, stochastic pro-
cessing times

2023 [26] Definition 3, JPP Makespan Not specific to cyclic RFS, identical
jobs

Table 1: Summary of the cyclic RPFS literature review.
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There is also a fourth definition, for which the answers to Questions 1 and 2 are
positive and negative, respectively. For this type, level passing is forbidden, but the job
order may be different at different levels. We suggest to term this RPFS type as Level
Passing Prohibited (LPP). Table 2 summarizes the four types of RPFS.

Permutation Type Job Passing (Question 1) Level Passing (Question 2)
Passing Prohibited (PP) Not Allowed Not Allowed
Level Passing Prohibited (LPP) Allowed Not Allowed
Job Passing Prohibited (JPP) Not Allowed Allowed
Passing Allowed (PA) Allowed Allowed

Table 2: Four possible permutation types in cyclic RPFS.

Example 1. An RFS problem with = = 3 jobs, < = 3 machines, ; = 2 levels, and the
following processing times:

%1 = ©≠
´
4 2 4 2 2 8
4 4 2 4 2 8
8 2 2 6 2 2

™Æ
¨

Here, each line corresponds to a job, and each column to an operation according to its
order in the flow. For example, the processing times of job 91 in machines 1, 2, and 3
are (4, 2, 4) at level ;1 and (2, 2, 8) at level ;2.

Figure 1 shows potential schedules based on the four permutation types. Different
colors represent different jobs ( 91 – red, 92 – green, and 93 – blue):

– PP type schedule with job order (2, 1, 3) at the two levels.
– LPP type schedule with job order (2, 1, 3) at the first level and (1, 2, 3) at the second

level.
– JPP type schedule with job order (2, 1, 3) for both levels, but ;2 of 92 (green) precedes
;1 of 93 (blue).

– PA type schedule with job order (2, 1, 3) at the first level and (1, 2, 3) at the second
level. In addition, ;2 of 91 (red) precedes ;1 of 93 (blue).

Figure 2 depicts a Venn diagram of the solution space of the different permutation
types. As follows from the definitions and visually presented by the Venn diagram, the
largest solution space is of the PA type with (3 · 2)!/(2!)3 = 90 possible permutations
for Example 1. The smallest solution space is of the PP type with 3! = 6 possible
permutations. The intermediate types contain (3!)2 = 36 and 5 · 3! = 30 possible
permutations for the LPP and JPP types of Example 1, respectively.

3 Heuristic Issues

A classical three-machine permutation flow shop scheduling problem with the makespan
objective is strongly NP-hard even without job reentrancy [14]. The problem �< |
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Level 1 m1
Level 2 m2

m 3

Level 1 m1
Level 2 m2

m 3

Level 1 m1
Level 2 m2

m 3

Level 1 m1
Level 2 m2

m 3

Order Time

PA

PP

LPP

JPP

2

2

34 38

2 6 10 14 18 22 26 30 34 38

6 10 14 18

22

26 3022

26 30 34 38

2 6 10 14 18 22 26 30 34 38

6 10 14 18

Fig. 1: Possible schedules of the four permutation types: passing prohibited (PP), level
passing prohibited (LPP), job passing prohibited (JPP), passing allowed (PA).

A44=CA0=C | ⇠max is NP-hard, even for a two-machine problem [10]. Most studies
on RFS problems thus focus on improving the computational efficiency of optimization
algorithms (e.g., branch and bound) or developing efficient heuristics and metaheuristics.
A common approach to devising a heuristic for RPFS is to adjust a (non-reentrant) flow
shop heuristic to the RFS problem. Several studies applied this methodology while
considering the PP [21] and PA [7] permutation types. The intermediate types – LPP
and JPP – were not considered in this respect.

This section aims to show the relevance of the different permutation types to heuris-
tics construction. We demonstrate this issue by examining Palmer’s slope heuristic [20]
as an initial step toward analyzing other commonly used PFS heuristics, such as CDS [2],
NEH [19], and others. Palmer’s slope heuristic has already been generalized for solving
an RFS problem with makespan objective [21]. The obtained solution is of a PP per-
mutation type. The generalization to the other permutation types is obtained by treating
the processing times of each job as the processing times of a job in a non-reentrant
flow shop (as if a machine at each level is a machine in itself). For each job, the slope
index is calculated, and the jobs are arranged in descending order of the slope. When
passing is prohibited, the job order is sufficient to determine the schedule. This simple
procedure can be naturally generalized to the other permutation types by the calculation
of slope indices for each of the sub-jobs. Treating sub-jobs is acceptable in generalizing
flow shop heuristics to the reentrant with PA permutation type [7]. The generalization
we consider here is to define an order of the sub-jobs according to their slopes, keeping
in mind the constraints each type induces:

– For the LPP permutation type, we first arrange the sub-jobs of all the jobs of the
first level according to its slope indices, from the largest to the smallest. We then
arrange the sub-jobs of the second level according to its slope. We continue this,
level after level, until the last level is reached and arranged.
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Non-Permutation

Passing Allowed

LPP JPPPP

Fig. 2: A Venn diagram of the RPFS permutation types, including non-permutation RFS.

– For the PA permutation type, we arrange all the sub-jobs according to the slope
indices while taking care of operation precedence, i.e., for each job, the sub-jobs of
that job will be arranged in ascending order of levels.

– For the JPP permutation type, we regard a combination of the two types of slope
indices. A job order is first determined according to the rule established for the PP
type (considering the job slope indices). Then, the sub-jobs are arranged according
to the sub-job indices while taking care of level precedence (like in the PA type),
i.e., ensuring that the sub-job order is maintained within each job.

Once the rule for sub-job order (described above for each of the permutation types)
is applied, a schedule is constructed by selecting each sub-job according to the order
and inserting it after the previous sub-job. Another step that is generally considered in
heuristics is that of solution improvement [13]. A standard improvement is obtained by
sub-job swaps. The described heuristic, including some swap improvements, is shown
in the following examples.

Consider Example 1 of Section 2. For this small example, following the above
heuristic steps results in only two schedules for the four permutation types. The PP-type
and LPP-type schedules are identical, with a makespan of 38. The JPP-type and the
PA-type schedules are identical, with a makespan of 50. The example shows a major
challenge in the generalization of heuristics based on the division into sub-jobs: how
to avoid, or at least reduce, cases in which sub-jobs that belong to the same job are
sequentially scheduled. In the second schedule, two such sequences greatly increase the
makespan. By applying two simple swaps to avoid these sequences, a JPP-type schedule
with a makespan of 36 can be obtained, see Figure 3.

Another challenge related to the construction of heuristics is related to tie-breaking,
as demonstrated by Example 2.
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m1
m 2
m 3

m 1
m 2
m 3

m 1
m 2
m 3

38 42 46

50

50

50

46

42 46

18 22 26 30 34

26 30 34 382 6 10 14 18

26 30 34 38 42

new 
JPP

2 6 10 14

2 6 10 14

PP & 
LPP

JPP 
& PA

18 22

22

Fig. 3: Schedules obtained by the adjusted slope heuristic. The "new JPP" schedule is
obtained from the JPP&PA schedule by two swaps: 91;2 $ 92;1 and 92;2 $ 93;1.

Example 2. An RFS problem with = = 4 jobs, < = 3 machines, ; = 3 levels, and the
following processing times:

%2 =
©≠≠≠
´

6 4 2 8 6 4 6 2 2
8 6 8 6 4 2 2 2 6
4 2 4 6 4 6 4 4 8
8 6 8 4 6 4 8 6 4

™ÆÆÆ
¨

Recall that each line corresponds to a job, and each column corresponds to an ordered
operation.

In Example 2, several sub-jobs have an identical slope index. For the LPP type, 96
different sub-job orders can be obtained depending on the rule that breaks the tie. Finding
a good tie-breaking rule is a known problem in flow shops [12] and can be significant for
the quality of the solution. Figure 4 shows two possible LPP-type schedules. There is a
tie between the schedules regarding the sub-job indices but the makespan is significantly
different.

For both Examples 1 and 2, better solutions were obtained by allowing passing.
In other scenarios, the strict PP type may be dominant. It is clear that a solution that
allows passing is always at least as good as a solution that prohibits it, and a substantial
challenge remains in finding good solutions by efficiently examining only a part of the
solution space.

4 Discussion

It is known that there are scenarios for which the optimal solution is not a permutation
schedule. This is true for �< | |⇠<0G compared to �< |?A<D |⇠<0G if < > 3 [10].
For the RFS problem, this is true even for two machines and the PA less-restricting
permutation type [7]. Nevertheless, many real-world RFS manufacturing systems prefer
to use permutation schedules because they offer greater ease of operation and control.
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m 1
m 2
m 3

m 1
m 2
m 3

2 10 18 26 34 42 50 58 66 74 82 90

2 10 18 26 34 42 50 58 66 9074 82

Fig. 4: Two LPP type schedules with ties regarding the sub-job slopes ( 91 – red, 92 –
green, 93 – blue. and 94 – purple)

In some cases, only permutation schedules are feasible because of the inflexibility of
material handling systems or limited buffer space [16]. Theoreticians may prefer the
permutation version as an algorithmically simplifying assumption. The permutation
scenario was also adjusted to the reentrant case. However, the meaning of "permutation"
has had several interpretations. We suggest to clarify the definition using the four
permutation types.

Several heuristics have been proposed over the years to achieve a high-quality RPFS
solution [21,7,8,17]. The types of permutations were only partially considered in pre-
vious work on RFS heuristics. We have shown a possible approach to extend Palmer’s
slope heuristic demonstrating the potential in regarding the four permutation types, as
well as the challenges ahead. This only serves as a preview for further comprehensive
research that will involve addressing larger problems and exploring other heuristics. A
generalization of existing heuristic methods to each permutation type may provide a
flexible and efficient framework for scheduling in RFS environments.
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